L(s) = 1 | − 7-s + (0.309 + 0.951i)11-s + (0.309 − 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.309 + 0.951i)23-s + (−0.809 + 0.587i)29-s + (−0.809 − 0.587i)31-s + (0.309 − 0.951i)37-s + (−0.309 + 0.951i)41-s + 43-s + (−0.809 + 0.587i)47-s + 49-s + (0.809 − 0.587i)53-s + (0.309 − 0.951i)59-s + ⋯ |
L(s) = 1 | − 7-s + (0.309 + 0.951i)11-s + (0.309 − 0.951i)13-s + (−0.809 − 0.587i)17-s + (0.809 + 0.587i)19-s + (0.309 + 0.951i)23-s + (−0.809 + 0.587i)29-s + (−0.809 − 0.587i)31-s + (0.309 − 0.951i)37-s + (−0.309 + 0.951i)41-s + 43-s + (−0.809 + 0.587i)47-s + 49-s + (0.809 − 0.587i)53-s + (0.309 − 0.951i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.187 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8988814460 - 0.7436194031i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8988814460 - 0.7436194031i\) |
\(L(1)\) |
\(\approx\) |
\(0.9093970826 - 0.05683576846i\) |
\(L(1)\) |
\(\approx\) |
\(0.9093970826 - 0.05683576846i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - T \) |
| 11 | \( 1 + (0.309 + 0.951i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (0.809 + 0.587i)T \) |
| 23 | \( 1 + (0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.309 + 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (-0.309 - 0.951i)T \) |
| 67 | \( 1 + (-0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 - 0.587i)T \) |
| 73 | \( 1 + (-0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.809 + 0.587i)T \) |
| 83 | \( 1 + (0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.309 - 0.951i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.96968334532321376527709620542, −22.17938731548560151276671909805, −21.62741885437870506832371100949, −20.54009332175664242072424464912, −19.65358529634131501082857087078, −19.00036186892139408763447209360, −18.26227827636952951981396688624, −17.04436060243191888842560093584, −16.404407081771974274121013289183, −15.698689345151019085809740854836, −14.658253749818919556398541246737, −13.62764304034151545023025778644, −13.12247133753120035031678224335, −11.98087642885147899803376694490, −11.17330552307074440732068886918, −10.26270839144008492654252605987, −9.10281702833528336709885747186, −8.7142549873578027539071357524, −7.23090723175452967043233495265, −6.48149005038813714321586149835, −5.66383980286999120590855493110, −4.29584624399532258325508279560, −3.44679769717104732965042241790, −2.36420327340981634785802737907, −0.92939711108195340673301791072,
0.339464288016158806987191232925, 1.756843940086482404764583163300, 3.03211984401910595502940408776, 3.85220380830382906879554928587, 5.123911316347583086767025682523, 6.03639195281054110077905229311, 7.07883794719166540131349714730, 7.78531678752981253863276222179, 9.2438697343783376627356846437, 9.61735798742025926342145173407, 10.72231830455610858770724775157, 11.66763916041816874386107913579, 12.754905582430562279399537499048, 13.17357932769265758021574907730, 14.32962464175026939333845838160, 15.29167070806966800774420160133, 15.95015586336943420007139660357, 16.821124099704799216418590690, 17.85975733697856865492733309743, 18.41177909504008474449733744015, 19.64861836626965919890414575537, 20.08305236193486671949481895657, 20.93373985120963661394770590911, 22.21682349935040914950647609079, 22.60407241811647542458714356480