L(s) = 1 | + (0.587 + 0.809i)2-s + (0.951 + 0.309i)3-s + (−0.309 + 0.951i)4-s + (0.309 + 0.951i)6-s − i·7-s + (−0.951 + 0.309i)8-s + (0.809 + 0.587i)9-s + (−0.809 + 0.587i)11-s + (−0.587 + 0.809i)12-s + (0.587 − 0.809i)13-s + (0.809 − 0.587i)14-s + (−0.809 − 0.587i)16-s + (0.951 − 0.309i)17-s + i·18-s + (−0.309 − 0.951i)19-s + ⋯ |
L(s) = 1 | + (0.587 + 0.809i)2-s + (0.951 + 0.309i)3-s + (−0.309 + 0.951i)4-s + (0.309 + 0.951i)6-s − i·7-s + (−0.951 + 0.309i)8-s + (0.809 + 0.587i)9-s + (−0.809 + 0.587i)11-s + (−0.587 + 0.809i)12-s + (0.587 − 0.809i)13-s + (0.809 − 0.587i)14-s + (−0.809 − 0.587i)16-s + (0.951 − 0.309i)17-s + i·18-s + (−0.309 − 0.951i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.698892521 + 1.317796120i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.698892521 + 1.317796120i\) |
\(L(1)\) |
\(\approx\) |
\(1.502935290 + 0.8146263744i\) |
\(L(1)\) |
\(\approx\) |
\(1.502935290 + 0.8146263744i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
good | 2 | \( 1 + (0.587 + 0.809i)T \) |
| 3 | \( 1 + (0.951 + 0.309i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + (-0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.587 - 0.809i)T \) |
| 17 | \( 1 + (0.951 - 0.309i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
| 23 | \( 1 + (-0.587 - 0.809i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.587 + 0.809i)T \) |
| 41 | \( 1 + (-0.809 - 0.587i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.951 - 0.309i)T \) |
| 53 | \( 1 + (0.951 + 0.309i)T \) |
| 59 | \( 1 + (0.809 + 0.587i)T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (0.951 - 0.309i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.587 - 0.809i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (0.809 - 0.587i)T \) |
| 97 | \( 1 + (-0.951 - 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−37.83914813124235530266748124924, −36.95296793427771887093297939565, −35.66072480695777225366142233666, −33.78789509266728952939908101014, −32.02657057510138798061776627674, −31.523862125357787500857504281564, −30.32285426605063366456286951633, −29.076146298482492391157443057720, −27.72683394011576383827045427617, −26.05638480343179985683091206165, −24.604934083227172991538570894799, −23.4153931595628825998142240338, −21.53611502144450401795286496697, −20.829278426493166479653774278, −19.10775540941618199150071974083, −18.53767676286194792550544945503, −15.64843473466794840508725022084, −14.34576141050023920624390795965, −13.1257342764403463460291410638, −11.787506531645565541452875646307, −9.83699969076060357130631425927, −8.35729297605591647017677515242, −5.85314952260678614135089002329, −3.60948880523282830801389596731, −2.00962811207997792106880625555,
3.233418702909588958935034996908, 4.82460368351358800972059216098, 7.162107251158793135539960620329, 8.36320321565733722042263037584, 10.281685234816200883568263210570, 12.86075528096509909418139352687, 13.927268770752639087339477676644, 15.203437904668665289310507087237, 16.396276979937542350697677652775, 18.092878207712702470918655031591, 20.15907046005617239439438131795, 21.14235793288864123145726798648, 22.80133874512205780707630217717, 24.01802416462035286251035286780, 25.53432201050028880350409263436, 26.23558771727709495506183551581, 27.560065896921924650537764698394, 29.98311919115548044573858749999, 30.8805355043744549490832883920, 32.24413557918853681821285672084, 32.97860683977653684130801577331, 34.27586574913220758342749273218, 35.975598991709876343890990784535, 36.74735205333305172005801626122, 38.59889367890269848499165209757