Properties

Label 1-59-59.58-r1-0-0
Degree $1$
Conductor $59$
Sign $1$
Analytic cond. $6.34043$
Root an. cond. $6.34043$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 11-s + 12-s − 13-s − 14-s + 15-s + 16-s + 17-s − 18-s + 19-s + 20-s + 21-s + 22-s − 23-s − 24-s + 25-s + 26-s + 27-s + 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s − 11-s + 12-s − 13-s − 14-s + 15-s + 16-s + 17-s − 18-s + 19-s + 20-s + 21-s + 22-s − 23-s − 24-s + 25-s + 26-s + 27-s + 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(59\)
Sign: $1$
Analytic conductor: \(6.34043\)
Root analytic conductor: \(6.34043\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 59,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.765808459\)
\(L(\frac12)\) \(\approx\) \(1.765808459\)
\(L(1)\) \(\approx\) \(1.227001578\)
\(L(1)\) \(\approx\) \(1.227001578\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 + T \)
31 \( 1 - T \)
37 \( 1 - T \)
41 \( 1 + T \)
43 \( 1 - T \)
47 \( 1 - T \)
53 \( 1 + T \)
61 \( 1 - T \)
67 \( 1 - T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−32.62597506746700614006662791729, −31.19958303885995070219023580384, −30.0324010196726329332126754077, −29.16100365280325938271044606275, −27.79011163666017973039843257895, −26.68094775485721075152939190393, −25.87806186021124020711720564769, −24.82402946979965173748262956374, −24.08601145647857941057807043640, −21.569070605424126618547423808772, −20.896101243085990628597678308829, −19.88682078807673111459341478801, −18.44399875207251902365075412344, −17.790219758596701721785145725428, −16.32249866535919391820100029157, −14.89651083104486534629573970204, −13.93416825418026727211224589156, −12.26165300698673870099690387165, −10.41842848762886878007922085459, −9.61712931549233611956560246964, −8.25421262721750835118876189276, −7.32539165541390632203700205008, −5.32387734981457323422720248811, −2.77335914537658608384341778358, −1.60645524674271843040065330326, 1.60645524674271843040065330326, 2.77335914537658608384341778358, 5.32387734981457323422720248811, 7.32539165541390632203700205008, 8.25421262721750835118876189276, 9.61712931549233611956560246964, 10.41842848762886878007922085459, 12.26165300698673870099690387165, 13.93416825418026727211224589156, 14.89651083104486534629573970204, 16.32249866535919391820100029157, 17.790219758596701721785145725428, 18.44399875207251902365075412344, 19.88682078807673111459341478801, 20.896101243085990628597678308829, 21.569070605424126618547423808772, 24.08601145647857941057807043640, 24.82402946979965173748262956374, 25.87806186021124020711720564769, 26.68094775485721075152939190393, 27.79011163666017973039843257895, 29.16100365280325938271044606275, 30.0324010196726329332126754077, 31.19958303885995070219023580384, 32.62597506746700614006662791729

Graph of the $Z$-function along the critical line