Properties

Label 1-571-571.368-r0-0-0
Degree $1$
Conductor $571$
Sign $0.0814 + 0.996i$
Analytic cond. $2.65171$
Root an. cond. $2.65171$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.821 − 0.569i)2-s + (−0.0385 + 0.999i)3-s + (0.350 + 0.936i)4-s + (0.840 + 0.542i)5-s + (0.601 − 0.799i)6-s + (0.490 + 0.871i)7-s + (0.245 − 0.969i)8-s + (−0.997 − 0.0770i)9-s + (−0.381 − 0.924i)10-s + (−0.609 − 0.792i)11-s + (−0.949 + 0.314i)12-s + (0.528 + 0.849i)13-s + (0.0935 − 0.995i)14-s + (−0.574 + 0.818i)15-s + (−0.754 + 0.656i)16-s + (0.224 − 0.974i)17-s + ⋯
L(s)  = 1  + (−0.821 − 0.569i)2-s + (−0.0385 + 0.999i)3-s + (0.350 + 0.936i)4-s + (0.840 + 0.542i)5-s + (0.601 − 0.799i)6-s + (0.490 + 0.871i)7-s + (0.245 − 0.969i)8-s + (−0.997 − 0.0770i)9-s + (−0.381 − 0.924i)10-s + (−0.609 − 0.792i)11-s + (−0.949 + 0.314i)12-s + (0.528 + 0.849i)13-s + (0.0935 − 0.995i)14-s + (−0.574 + 0.818i)15-s + (−0.754 + 0.656i)16-s + (0.224 − 0.974i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 571 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0814 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0814 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(571\)
Sign: $0.0814 + 0.996i$
Analytic conductor: \(2.65171\)
Root analytic conductor: \(2.65171\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{571} (368, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 571,\ (0:\ ),\ 0.0814 + 0.996i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8199130422 + 0.7556278344i\)
\(L(\frac12)\) \(\approx\) \(0.8199130422 + 0.7556278344i\)
\(L(1)\) \(\approx\) \(0.8402347900 + 0.3049839582i\)
\(L(1)\) \(\approx\) \(0.8402347900 + 0.3049839582i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad571 \( 1 \)
good2 \( 1 + (-0.821 - 0.569i)T \)
3 \( 1 + (-0.0385 + 0.999i)T \)
5 \( 1 + (0.840 + 0.542i)T \)
7 \( 1 + (0.490 + 0.871i)T \)
11 \( 1 + (-0.609 - 0.792i)T \)
13 \( 1 + (0.528 + 0.849i)T \)
17 \( 1 + (0.224 - 0.974i)T \)
19 \( 1 + (0.938 + 0.345i)T \)
23 \( 1 + (0.997 + 0.0660i)T \)
29 \( 1 + (0.137 + 0.990i)T \)
31 \( 1 + (0.945 + 0.324i)T \)
37 \( 1 + (0.970 + 0.240i)T \)
41 \( 1 + (-0.998 + 0.0550i)T \)
43 \( 1 + (-0.234 + 0.972i)T \)
47 \( 1 + (-0.191 - 0.981i)T \)
53 \( 1 + (0.329 - 0.944i)T \)
59 \( 1 + (-0.677 + 0.735i)T \)
61 \( 1 + (-0.126 - 0.991i)T \)
67 \( 1 + (-0.982 + 0.186i)T \)
71 \( 1 + (-0.978 + 0.207i)T \)
73 \( 1 + (-0.693 + 0.720i)T \)
79 \( 1 + (0.930 - 0.366i)T \)
83 \( 1 + (-0.992 - 0.120i)T \)
89 \( 1 + (0.391 + 0.920i)T \)
97 \( 1 + (0.266 - 0.963i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−23.419684644163689698356294003990, −22.618172137849848226725387601803, −20.931157921759316223986961759993, −20.415859482802629849169409281308, −19.67458085186646853122835426213, −18.5867089893946850405933293335, −17.84767781863418670732648031828, −17.33706564438020762203913963400, −16.799012694535158263759358299629, −15.52082868915744096803386922110, −14.618398192886551369274690774503, −13.560529960853610240630250630059, −13.17331111671730521127176202448, −11.922431222317176314628426846999, −10.74556199363539809607456781721, −10.11176947285423774528864965560, −8.99119312480559702743902729695, −8.01408185717123686392518327715, −7.52647678129259832001301536327, −6.441590632430715654332433383392, −5.62950141610630242182316957643, −4.733040308302346019029460230446, −2.70039205379885467667941105426, −1.555156826586416134608454916072, −0.859359515840556728975468015919, 1.42719398843071065004884387412, 2.79754906801703425101807287855, 3.18245721546162164036541025394, 4.80006040733078795103759758321, 5.69735154208719438110232090939, 6.81855576108663123964515301809, 8.19172657412264082398133929376, 8.98379632702020103585424237472, 9.62084620244267103607638665719, 10.48991247692673290056957026957, 11.328750759470126364304978327051, 11.80044030286091930659391404259, 13.32657772903470925375544758426, 14.14193543643501333068498968360, 15.16700219424897876871555094560, 16.1658394888359681417793185146, 16.652199936149794084303091519837, 17.85198842698184586197396601407, 18.36748738778106520549402205089, 19.07120124669459498832717078381, 20.390576877210201693071140158, 21.09012402976866623973876037814, 21.52381396422293288710448782969, 22.14342945874092589417637236981, 23.16695968696339048932119244617

Graph of the $Z$-function along the critical line