L(s) = 1 | + (−0.298 − 0.954i)2-s + (0.137 − 0.990i)3-s + (−0.821 + 0.569i)4-s + (0.0275 − 0.999i)5-s + (−0.986 + 0.164i)6-s + (−0.401 + 0.915i)7-s + (0.789 + 0.614i)8-s + (−0.962 − 0.272i)9-s + (−0.962 + 0.272i)10-s + (0.716 − 0.697i)11-s + (0.451 + 0.892i)12-s + (−0.191 − 0.981i)13-s + (0.993 + 0.110i)14-s + (−0.986 − 0.164i)15-s + (0.350 − 0.936i)16-s + (0.350 − 0.936i)17-s + ⋯ |
L(s) = 1 | + (−0.298 − 0.954i)2-s + (0.137 − 0.990i)3-s + (−0.821 + 0.569i)4-s + (0.0275 − 0.999i)5-s + (−0.986 + 0.164i)6-s + (−0.401 + 0.915i)7-s + (0.789 + 0.614i)8-s + (−0.962 − 0.272i)9-s + (−0.962 + 0.272i)10-s + (0.716 − 0.697i)11-s + (0.451 + 0.892i)12-s + (−0.191 − 0.981i)13-s + (0.993 + 0.110i)14-s + (−0.986 − 0.164i)15-s + (0.350 − 0.936i)16-s + (0.350 − 0.936i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.594 + 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.594 + 0.803i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3530114851 - 0.7004989339i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3530114851 - 0.7004989339i\) |
\(L(1)\) |
\(\approx\) |
\(0.3962602950 - 0.6779258933i\) |
\(L(1)\) |
\(\approx\) |
\(0.3962602950 - 0.6779258933i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 571 | \( 1 \) |
good | 2 | \( 1 + (-0.298 - 0.954i)T \) |
| 3 | \( 1 + (0.137 - 0.990i)T \) |
| 5 | \( 1 + (0.0275 - 0.999i)T \) |
| 7 | \( 1 + (-0.401 + 0.915i)T \) |
| 11 | \( 1 + (0.716 - 0.697i)T \) |
| 13 | \( 1 + (-0.191 - 0.981i)T \) |
| 17 | \( 1 + (0.350 - 0.936i)T \) |
| 19 | \( 1 + (0.137 - 0.990i)T \) |
| 23 | \( 1 + (0.789 - 0.614i)T \) |
| 29 | \( 1 + (-0.754 + 0.656i)T \) |
| 31 | \( 1 + (-0.986 + 0.164i)T \) |
| 37 | \( 1 + (-0.191 + 0.981i)T \) |
| 41 | \( 1 + (0.0275 - 0.999i)T \) |
| 43 | \( 1 + (-0.962 + 0.272i)T \) |
| 47 | \( 1 + (0.635 + 0.771i)T \) |
| 53 | \( 1 + (-0.298 + 0.954i)T \) |
| 59 | \( 1 + (-0.401 + 0.915i)T \) |
| 61 | \( 1 + (0.975 + 0.218i)T \) |
| 67 | \( 1 + (0.975 - 0.218i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.754 - 0.656i)T \) |
| 79 | \( 1 + (0.904 - 0.426i)T \) |
| 83 | \( 1 + (0.635 + 0.771i)T \) |
| 89 | \( 1 + (0.350 - 0.936i)T \) |
| 97 | \( 1 + (-0.821 + 0.569i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.36876581441314381480574346914, −23.19939862406299942909907057788, −22.224292391881174605023682886457, −21.617681600762355939559800580723, −20.37386475982331446459409768573, −19.424935747677316092298915621811, −18.87426787029837507369443108944, −17.57348440385389649034494495051, −16.93286673560070924102154123293, −16.3557604438771952555042317599, −15.26493502421995727131997938045, −14.57042699708315133836939556944, −14.20229182695462917412410853479, −13.08161819256680933323861829671, −11.51352830881432185378542732897, −10.57662758062001210798867982958, −9.817727673365863755982682380586, −9.33387868877673507897915225510, −8.00721517648772067788843055568, −7.11186265993469440568319208015, −6.37595831433283589624377851236, −5.31645531499682673418485959047, −3.89490652183307681427215238861, −3.77539211180391937484486522721, −1.8016404081847388221332309665,
0.464635921518785478358562377386, 1.42441114478847262722076333042, 2.64928857725103650769425803638, 3.35758728477243124301905407267, 4.979816114096730966111993802032, 5.70393326676729490497998002835, 7.10363651078591494037626410186, 8.19082535253863706475888962617, 8.98710186747642963356602105978, 9.34502267410300247852689472968, 10.90635685227229777680396757757, 11.83276225180495451179708790525, 12.39611523981059515046373818717, 13.09426917922936364991732826395, 13.76659684846064094476588434581, 14.94467447506330275059833890196, 16.30609852276392199787902836472, 17.06976828094789948357407475891, 17.9243957388309325018687120883, 18.69631857048767341919189244273, 19.37948661346634185773397663776, 20.16138068983645957332652095895, 20.70854346494718548815106033289, 21.95905141138602989181105011360, 22.451173412399616302596893560549