L(s) = 1 | + (−0.999 − 0.0345i)2-s + (0.623 − 0.781i)3-s + (0.997 + 0.0689i)4-s + (−0.994 + 0.103i)5-s + (−0.650 + 0.759i)6-s + (0.915 + 0.402i)7-s + (−0.994 − 0.103i)8-s + (−0.222 − 0.974i)9-s + (0.997 − 0.0689i)10-s + (−0.748 + 0.663i)11-s + (0.675 − 0.736i)12-s + (−0.900 − 0.433i)13-s + (−0.900 − 0.433i)14-s + (−0.539 + 0.842i)15-s + (0.990 + 0.137i)16-s + (−0.479 + 0.877i)17-s + ⋯ |
L(s) = 1 | + (−0.999 − 0.0345i)2-s + (0.623 − 0.781i)3-s + (0.997 + 0.0689i)4-s + (−0.994 + 0.103i)5-s + (−0.650 + 0.759i)6-s + (0.915 + 0.402i)7-s + (−0.994 − 0.103i)8-s + (−0.222 − 0.974i)9-s + (0.997 − 0.0689i)10-s + (−0.748 + 0.663i)11-s + (0.675 − 0.736i)12-s + (−0.900 − 0.433i)13-s + (−0.900 − 0.433i)14-s + (−0.539 + 0.842i)15-s + (0.990 + 0.137i)16-s + (−0.479 + 0.877i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.639 + 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.639 + 0.768i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6312138915 + 0.2957792571i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6312138915 + 0.2957792571i\) |
\(L(1)\) |
\(\approx\) |
\(0.6908412911 + 0.01871569863i\) |
\(L(1)\) |
\(\approx\) |
\(0.6908412911 + 0.01871569863i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (-0.999 - 0.0345i)T \) |
| 3 | \( 1 + (0.623 - 0.781i)T \) |
| 5 | \( 1 + (-0.994 + 0.103i)T \) |
| 7 | \( 1 + (0.915 + 0.402i)T \) |
| 11 | \( 1 + (-0.748 + 0.663i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (-0.479 + 0.877i)T \) |
| 19 | \( 1 + (-0.0862 + 0.996i)T \) |
| 23 | \( 1 + (0.770 + 0.636i)T \) |
| 29 | \( 1 + (-0.0172 - 0.999i)T \) |
| 31 | \( 1 + (0.509 + 0.860i)T \) |
| 37 | \( 1 + (0.449 + 0.893i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.289 + 0.957i)T \) |
| 47 | \( 1 + (-0.970 + 0.239i)T \) |
| 53 | \( 1 + (-0.539 + 0.842i)T \) |
| 59 | \( 1 + (-0.354 + 0.935i)T \) |
| 61 | \( 1 + (0.256 - 0.966i)T \) |
| 67 | \( 1 + (0.675 - 0.736i)T \) |
| 71 | \( 1 + (-0.832 + 0.553i)T \) |
| 73 | \( 1 + (-0.539 - 0.842i)T \) |
| 79 | \( 1 + (-0.289 + 0.957i)T \) |
| 83 | \( 1 + (0.120 - 0.992i)T \) |
| 89 | \( 1 + (0.256 + 0.966i)T \) |
| 97 | \( 1 + (0.386 + 0.922i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.56549591107245620960015529694, −22.22377650006163097758443343847, −21.2207914363041002756777472501, −20.60163323074464606518060306957, −19.87651767404594627640249263356, −19.21989534907378279904735716962, −18.35122391838917877064196354984, −17.26214872430973020656756905617, −16.398990157243812456136691034328, −15.81538609747046244045366729397, −14.95343472157658882476530842482, −14.30612918457497715696941250619, −12.970538969081450497201700790713, −11.4787611649995318019655020241, −11.16010092580451071974513290866, −10.269257266322295347224876435136, −9.110107116811853709653974375080, −8.52477855960883652274271673990, −7.64483348580808618265046253454, −7.0448298266500605856235092160, −5.17416993975688984365656745274, −4.44862626398321821988651469850, −3.10056108223841431144246810515, −2.27066407418924158021779672143, −0.491228351843277249399442274624,
1.27301443369072680700199504025, 2.29672677119143336100554594800, 3.18198376863511365185300048972, 4.65363371510560368370801495121, 6.10750437925775182581974076612, 7.26121827697303880915292650804, 7.941139907913124145179623243283, 8.2529098124762563740526516546, 9.42337322789061827656129270437, 10.4974377923696284797680806376, 11.49684802688371874350196367018, 12.22826722587528667034134816106, 12.914513547404717589134909687074, 14.5642146063672394737480006929, 15.06411105966933296283016502374, 15.693870732427213875354066410573, 17.12766777036018795977435451482, 17.761108191837183862560866704499, 18.54852583130859901244640416873, 19.26759383035226742993362569758, 19.89388534405307430168772083160, 20.69230756171778457856001551582, 21.41986301755556878105052359864, 23.009580734904131301428021518608, 23.73539033496482595111925192738