L(s) = 1 | + (0.813 + 0.582i)2-s + (−0.900 + 0.433i)3-s + (0.322 + 0.946i)4-s + (−0.289 − 0.957i)5-s + (−0.985 − 0.171i)6-s + (0.386 + 0.922i)7-s + (−0.289 + 0.957i)8-s + (0.623 − 0.781i)9-s + (0.322 − 0.946i)10-s + (0.885 − 0.464i)11-s + (−0.700 − 0.713i)12-s + (−0.222 + 0.974i)13-s + (−0.222 + 0.974i)14-s + (0.675 + 0.736i)15-s + (−0.792 + 0.609i)16-s + (0.915 − 0.402i)17-s + ⋯ |
L(s) = 1 | + (0.813 + 0.582i)2-s + (−0.900 + 0.433i)3-s + (0.322 + 0.946i)4-s + (−0.289 − 0.957i)5-s + (−0.985 − 0.171i)6-s + (0.386 + 0.922i)7-s + (−0.289 + 0.957i)8-s + (0.623 − 0.781i)9-s + (0.322 − 0.946i)10-s + (0.885 − 0.464i)11-s + (−0.700 − 0.713i)12-s + (−0.222 + 0.974i)13-s + (−0.222 + 0.974i)14-s + (0.675 + 0.736i)15-s + (−0.792 + 0.609i)16-s + (0.915 − 0.402i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.115 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.115 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.123869493 + 1.261915028i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.123869493 + 1.261915028i\) |
\(L(1)\) |
\(\approx\) |
\(1.154183649 + 0.6589468705i\) |
\(L(1)\) |
\(\approx\) |
\(1.154183649 + 0.6589468705i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (0.813 + 0.582i)T \) |
| 3 | \( 1 + (-0.900 + 0.433i)T \) |
| 5 | \( 1 + (-0.289 - 0.957i)T \) |
| 7 | \( 1 + (0.386 + 0.922i)T \) |
| 11 | \( 1 + (0.885 - 0.464i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 + (0.915 - 0.402i)T \) |
| 19 | \( 1 + (-0.0172 - 0.999i)T \) |
| 23 | \( 1 + (0.990 - 0.137i)T \) |
| 29 | \( 1 + (-0.952 + 0.305i)T \) |
| 31 | \( 1 + (0.978 - 0.205i)T \) |
| 37 | \( 1 + (0.509 + 0.860i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.539 + 0.842i)T \) |
| 47 | \( 1 + (-0.354 + 0.935i)T \) |
| 53 | \( 1 + (0.675 + 0.736i)T \) |
| 59 | \( 1 + (-0.970 - 0.239i)T \) |
| 61 | \( 1 + (0.0517 + 0.998i)T \) |
| 67 | \( 1 + (-0.700 - 0.713i)T \) |
| 71 | \( 1 + (-0.418 + 0.908i)T \) |
| 73 | \( 1 + (0.675 - 0.736i)T \) |
| 79 | \( 1 + (-0.539 + 0.842i)T \) |
| 83 | \( 1 + (0.568 - 0.822i)T \) |
| 89 | \( 1 + (0.0517 - 0.998i)T \) |
| 97 | \( 1 + (-0.650 + 0.759i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.88589745051423163821193889577, −22.74014624822542094874957988846, −21.66313667627497703208288677599, −20.78471573409754086381443080971, −19.73335277003044432766641210640, −19.11474763961984314044616498524, −18.22265362514892568557355557027, −17.32915985720747548246212371701, −16.4879658555492628786727228745, −15.170696620983597690135641128076, −14.588469228652404213626748880250, −13.70473671860820167558067329249, −12.72418031088039320227482682241, −11.95942895019127879269011910831, −11.183887393126274855661261141067, −10.4496219545467303928016622414, −9.88693431876579259389348027315, −7.78495714986501973034733667866, −7.11124913037721092897020546684, −6.21468551668523411824949900263, −5.31986875653739312060981484439, −4.17423180402482165723715309433, −3.40001211064344713061634674151, −1.96124905292137217970715306343, −0.898023283474269676503605813938,
1.30935126393273553325104257376, 3.01689904222826525343024816251, 4.33021169890722045512937322574, 4.82439187835999713292281190743, 5.70812152325908816112941928281, 6.517321935227182913508720297812, 7.64219512300235115951805617445, 8.9034436649237806155632919733, 9.360758812137102299054687016970, 11.280155943925299713576356862686, 11.665607069503822642880949405910, 12.34755641360812088288722852382, 13.25486957643070161137287765295, 14.45774855602667200302410999371, 15.221204965342301762186943127090, 16.045664155753194265090718848008, 16.77533374967207574411606221611, 17.1945055196351085068176701626, 18.370443790773691040090180734895, 19.48373159818434310017627319960, 20.801861451850369154354060892123, 21.2953650299126740715954260589, 21.961801142799218940974831988423, 22.79473871601705198881239833734, 23.65542575598012388599648001166