L(s) = 1 | + (0.449 − 0.893i)2-s + (−0.900 − 0.433i)3-s + (−0.596 − 0.802i)4-s + (−0.985 − 0.171i)5-s + (−0.792 + 0.609i)6-s + (0.770 − 0.636i)7-s + (−0.985 + 0.171i)8-s + (0.623 + 0.781i)9-s + (−0.596 + 0.802i)10-s + (−0.354 − 0.935i)11-s + (0.188 + 0.982i)12-s + (−0.222 − 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.813 + 0.582i)15-s + (−0.289 + 0.957i)16-s + (−0.952 + 0.305i)17-s + ⋯ |
L(s) = 1 | + (0.449 − 0.893i)2-s + (−0.900 − 0.433i)3-s + (−0.596 − 0.802i)4-s + (−0.985 − 0.171i)5-s + (−0.792 + 0.609i)6-s + (0.770 − 0.636i)7-s + (−0.985 + 0.171i)8-s + (0.623 + 0.781i)9-s + (−0.596 + 0.802i)10-s + (−0.354 − 0.935i)11-s + (0.188 + 0.982i)12-s + (−0.222 − 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.813 + 0.582i)15-s + (−0.289 + 0.957i)16-s + (−0.952 + 0.305i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.308 + 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2186712465 - 0.1589261053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2186712465 - 0.1589261053i\) |
\(L(1)\) |
\(\approx\) |
\(0.3950256551 - 0.5046941607i\) |
\(L(1)\) |
\(\approx\) |
\(0.3950256551 - 0.5046941607i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (0.449 - 0.893i)T \) |
| 3 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 + (-0.985 - 0.171i)T \) |
| 7 | \( 1 + (0.770 - 0.636i)T \) |
| 11 | \( 1 + (-0.354 - 0.935i)T \) |
| 13 | \( 1 + (-0.222 - 0.974i)T \) |
| 17 | \( 1 + (-0.952 + 0.305i)T \) |
| 19 | \( 1 + (-0.928 - 0.370i)T \) |
| 23 | \( 1 + (-0.994 + 0.103i)T \) |
| 29 | \( 1 + (0.851 + 0.524i)T \) |
| 31 | \( 1 + (-0.154 - 0.987i)T \) |
| 37 | \( 1 + (-0.700 + 0.713i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.999 - 0.0345i)T \) |
| 47 | \( 1 + (0.120 + 0.992i)T \) |
| 53 | \( 1 + (0.813 + 0.582i)T \) |
| 59 | \( 1 + (0.568 + 0.822i)T \) |
| 61 | \( 1 + (-0.418 - 0.908i)T \) |
| 67 | \( 1 + (0.188 + 0.982i)T \) |
| 71 | \( 1 + (0.997 - 0.0689i)T \) |
| 73 | \( 1 + (0.813 - 0.582i)T \) |
| 79 | \( 1 + (-0.999 - 0.0345i)T \) |
| 83 | \( 1 + (-0.748 + 0.663i)T \) |
| 89 | \( 1 + (-0.418 + 0.908i)T \) |
| 97 | \( 1 + (0.990 + 0.137i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.0017940658655586040479054956, −23.13580246467099567886790343999, −22.722882508212170897815017321066, −21.59450224484197849464789975095, −21.23564597414086515459962430704, −19.96243241697251074410271055148, −18.610606278091263922754415382882, −17.96957465210900920883456006265, −17.24222728451724262953873539126, −16.1900584354023177895208946777, −15.63897689290702041513749494879, −14.96244556667950094136974912342, −14.20200009201398658851729534206, −12.706138080325780560114508852400, −12.04837244378136043492594533042, −11.47041592597156475748657752029, −10.30602290183691353685150771038, −9.036736192461804890863246890641, −8.20276882567325158745884729617, −7.10661128026648896501806610290, −6.46985126895405664359835052050, −5.21862040201264105769280289483, −4.518443561747934170108179069064, −3.93067957922057782939008541862, −2.215859483675750682876022009482,
0.15356571163231722084032601773, 1.17038695097699482727714301954, 2.52873367404091131472459395799, 3.922171195361264876877151911216, 4.6294631399169816410824173172, 5.52753053576608279693166262403, 6.61608498785404861085890035320, 7.88705881195859454132749832200, 8.545441070665255547852584488732, 10.263948454925428809235436079805, 10.91221799677250923079859054937, 11.39626749756781265109082285862, 12.32936590621224632630672753885, 13.07887937334851632276490055816, 13.85529801152393960728283870288, 15.05661084484887393057409718201, 15.84123308914522365572839912422, 17.01016348708781668833797496780, 17.81958245562054797989893074793, 18.59041797630495775829477672390, 19.54971043494171244129815606136, 20.05953050424650187623489466796, 21.12199649566796694591452154992, 21.97219632334879855071888700864, 22.71558977463710926843463976019