L(s) = 1 | + (−0.650 − 0.759i)2-s + (−0.900 + 0.433i)3-s + (−0.154 + 0.987i)4-s + (0.851 + 0.524i)5-s + (0.915 + 0.402i)6-s + (−0.596 − 0.802i)7-s + (0.851 − 0.524i)8-s + (0.623 − 0.781i)9-s + (−0.154 − 0.987i)10-s + (−0.748 − 0.663i)11-s + (−0.289 − 0.957i)12-s + (−0.222 + 0.974i)13-s + (−0.222 + 0.974i)14-s + (−0.994 − 0.103i)15-s + (−0.952 − 0.305i)16-s + (0.0517 + 0.998i)17-s + ⋯ |
L(s) = 1 | + (−0.650 − 0.759i)2-s + (−0.900 + 0.433i)3-s + (−0.154 + 0.987i)4-s + (0.851 + 0.524i)5-s + (0.915 + 0.402i)6-s + (−0.596 − 0.802i)7-s + (0.851 − 0.524i)8-s + (0.623 − 0.781i)9-s + (−0.154 − 0.987i)10-s + (−0.748 − 0.663i)11-s + (−0.289 − 0.957i)12-s + (−0.222 + 0.974i)13-s + (−0.222 + 0.974i)14-s + (−0.994 − 0.103i)15-s + (−0.952 − 0.305i)16-s + (0.0517 + 0.998i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.001581076454 + 0.009748473350i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.001581076454 + 0.009748473350i\) |
\(L(1)\) |
\(\approx\) |
\(0.4677357031 - 0.07590965174i\) |
\(L(1)\) |
\(\approx\) |
\(0.4677357031 - 0.07590965174i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 547 | \( 1 \) |
good | 2 | \( 1 + (-0.650 - 0.759i)T \) |
| 3 | \( 1 + (-0.900 + 0.433i)T \) |
| 5 | \( 1 + (0.851 + 0.524i)T \) |
| 7 | \( 1 + (-0.596 - 0.802i)T \) |
| 11 | \( 1 + (-0.748 - 0.663i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 + (0.0517 + 0.998i)T \) |
| 19 | \( 1 + (-0.832 - 0.553i)T \) |
| 23 | \( 1 + (-0.0172 - 0.999i)T \) |
| 29 | \( 1 + (-0.418 - 0.908i)T \) |
| 31 | \( 1 + (0.725 + 0.688i)T \) |
| 37 | \( 1 + (-0.792 + 0.609i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + (-0.868 + 0.495i)T \) |
| 47 | \( 1 + (-0.970 - 0.239i)T \) |
| 53 | \( 1 + (-0.994 - 0.103i)T \) |
| 59 | \( 1 + (-0.354 - 0.935i)T \) |
| 61 | \( 1 + (0.188 - 0.982i)T \) |
| 67 | \( 1 + (-0.289 - 0.957i)T \) |
| 71 | \( 1 + (0.509 + 0.860i)T \) |
| 73 | \( 1 + (-0.994 + 0.103i)T \) |
| 79 | \( 1 + (-0.868 + 0.495i)T \) |
| 83 | \( 1 + (0.120 + 0.992i)T \) |
| 89 | \( 1 + (0.188 + 0.982i)T \) |
| 97 | \( 1 + (-0.479 - 0.877i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.02709412767712949593665997563, −22.99702607967706740825580780570, −22.54815200628463035374783577706, −21.44709274018952038902488724773, −20.41494856405684827952086209060, −19.31407450548290904988642377440, −18.45720474696152449104440928688, −17.8345300516171553845538098552, −17.28729821781317049063212379614, −16.27939459549210070974801242532, −15.74588962258694610044668064347, −14.73255208235019561630569743475, −13.38933813120125915771571328135, −12.87436399265862341672010674948, −11.90498389935746925899791509987, −10.55179011404092591870416192223, −9.945571715329738524468968492779, −9.10456557717123317826009611286, −7.96239632407358681659481515402, −7.088923849576536259074835970102, −6.02794474726606659404700694208, −5.489788877181213628533209906228, −4.79691564329152530171187016235, −2.51593757858173055276684202275, −1.49422901301353188784736465472,
0.00726642540267351351694654301, 1.52153495064125347887112988185, 2.784250946493369082108109710886, 3.864766952552287030142793788670, 4.84120166165210556777187877935, 6.36186881556912374312940215309, 6.75373971940878739991590317183, 8.19965514134187066334463134910, 9.39472197855760684081032325706, 10.11121873348071162868899239742, 10.70979765366920693635980337484, 11.31151831891326008498750627967, 12.600141625270372663913824243, 13.21583931447322721537071361896, 14.216506216632866564136874308, 15.60219727136704239928566063177, 16.61955895728426876779678399587, 17.05637556336018616683865738220, 17.78896815448336251028123960604, 18.80865209756993887535170911245, 19.29392544682189399390179938228, 20.65333122369657269739977465496, 21.35920930733513561275260223902, 21.81146662397056198851350702391, 22.70923085198538871529949004734