L(s) = 1 | + (−0.280 − 0.959i)2-s + (0.193 − 0.981i)3-s + (−0.842 + 0.538i)4-s + (0.0149 + 0.999i)5-s + (−0.995 + 0.0896i)6-s + (0.753 + 0.657i)8-s + (−0.925 − 0.379i)9-s + (0.955 − 0.294i)10-s + (0.365 + 0.930i)12-s + (−0.691 + 0.722i)13-s + (0.983 + 0.178i)15-s + (0.420 − 0.907i)16-s + (−0.163 − 0.986i)17-s + (−0.104 + 0.994i)18-s + (−0.104 − 0.994i)19-s + (−0.550 − 0.834i)20-s + ⋯ |
L(s) = 1 | + (−0.280 − 0.959i)2-s + (0.193 − 0.981i)3-s + (−0.842 + 0.538i)4-s + (0.0149 + 0.999i)5-s + (−0.995 + 0.0896i)6-s + (0.753 + 0.657i)8-s + (−0.925 − 0.379i)9-s + (0.955 − 0.294i)10-s + (0.365 + 0.930i)12-s + (−0.691 + 0.722i)13-s + (0.983 + 0.178i)15-s + (0.420 − 0.907i)16-s + (−0.163 − 0.986i)17-s + (−0.104 + 0.994i)18-s + (−0.104 − 0.994i)19-s + (−0.550 − 0.834i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.186 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.186 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01802324928 + 0.02177100581i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01802324928 + 0.02177100581i\) |
\(L(1)\) |
\(\approx\) |
\(0.5361210254 - 0.3386008971i\) |
\(L(1)\) |
\(\approx\) |
\(0.5361210254 - 0.3386008971i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.280 - 0.959i)T \) |
| 3 | \( 1 + (0.193 - 0.981i)T \) |
| 5 | \( 1 + (0.0149 + 0.999i)T \) |
| 13 | \( 1 + (-0.691 + 0.722i)T \) |
| 17 | \( 1 + (-0.163 - 0.986i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (-0.988 + 0.149i)T \) |
| 29 | \( 1 + (-0.963 + 0.266i)T \) |
| 31 | \( 1 + (-0.978 + 0.207i)T \) |
| 37 | \( 1 + (0.251 - 0.967i)T \) |
| 41 | \( 1 + (0.753 + 0.657i)T \) |
| 43 | \( 1 + (-0.222 + 0.974i)T \) |
| 47 | \( 1 + (-0.337 + 0.941i)T \) |
| 53 | \( 1 + (-0.772 - 0.635i)T \) |
| 59 | \( 1 + (-0.946 - 0.323i)T \) |
| 61 | \( 1 + (-0.772 + 0.635i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.550 + 0.834i)T \) |
| 73 | \( 1 + (-0.337 - 0.941i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.691 - 0.722i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + (0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.167250316116789425110819037900, −23.327907190652344071078508887820, −22.313265130168779232478722671394, −21.734263381536409609935522908354, −20.53508643090852139271849815901, −19.97494527644853699601296897254, −19.00594789924587935700606269462, −17.781767064620343252770180077315, −16.89432914961166080642310596461, −16.582648169592770734653853940721, −15.539622337154624223043164081648, −14.97620343537392174704274601598, −14.080309459358554813094394951656, −13.07963185552300797712201045920, −12.15334736105749143098410311308, −10.65266200948515232958234947832, −9.92148802916218294016850679681, −9.14674300031609479857793132478, −8.2742189753371761357760966383, −7.679363932779556667971298384113, −5.98720756973107368134600013979, −5.44404856614999733185856813786, −4.43148661111498899268486542485, −3.69244693271238878708592076488, −1.81830821655197875171098978884,
0.0151376998434528631618447234, 1.72589787513676750200679611096, 2.51555645610167496965054463071, 3.32455764162783865748986566054, 4.63834092257644740791221297298, 6.05167137525960354827277122820, 7.2309598370279766603810261296, 7.68311362426832698883696849947, 9.06589819003066171396002512697, 9.66049236315009674728946660599, 11.051028292006532044411755837, 11.44587768280520335621187013148, 12.41592726592547337412689899824, 13.29888571709227615281097245834, 14.14228627727731524134242499745, 14.68197653112108459171644437486, 16.243664274870239646200239813757, 17.40286051006933195921246205260, 18.10621961643764965825094109244, 18.57691124925105663986650681538, 19.59473706371055175339743396283, 19.87865550993414273906647867179, 21.12341363909809464548231264309, 22.03306089238169593275479151981, 22.64294733899266042082212227730