L(s) = 1 | + (−0.365 − 0.930i)2-s + (−0.0747 − 0.997i)3-s + (−0.733 + 0.680i)4-s + (−0.826 + 0.563i)5-s + (−0.900 + 0.433i)6-s + (0.900 + 0.433i)8-s + (−0.988 + 0.149i)9-s + (0.826 + 0.563i)10-s + (0.733 + 0.680i)12-s + (0.623 − 0.781i)13-s + (0.623 + 0.781i)15-s + (0.0747 − 0.997i)16-s + (0.955 − 0.294i)17-s + (0.5 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.222 − 0.974i)20-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.930i)2-s + (−0.0747 − 0.997i)3-s + (−0.733 + 0.680i)4-s + (−0.826 + 0.563i)5-s + (−0.900 + 0.433i)6-s + (0.900 + 0.433i)8-s + (−0.988 + 0.149i)9-s + (0.826 + 0.563i)10-s + (0.733 + 0.680i)12-s + (0.623 − 0.781i)13-s + (0.623 + 0.781i)15-s + (0.0747 − 0.997i)16-s + (0.955 − 0.294i)17-s + (0.5 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.222 − 0.974i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.896 - 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1639114432 - 0.7008609126i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1639114432 - 0.7008609126i\) |
\(L(1)\) |
\(\approx\) |
\(0.5240994177 - 0.4610051833i\) |
\(L(1)\) |
\(\approx\) |
\(0.5240994177 - 0.4610051833i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.365 - 0.930i)T \) |
| 3 | \( 1 + (-0.0747 - 0.997i)T \) |
| 5 | \( 1 + (-0.826 + 0.563i)T \) |
| 13 | \( 1 + (0.623 - 0.781i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.955 + 0.294i)T \) |
| 29 | \( 1 + (0.222 - 0.974i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (-0.900 - 0.433i)T \) |
| 43 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.733 + 0.680i)T \) |
| 59 | \( 1 + (-0.826 - 0.563i)T \) |
| 61 | \( 1 + (-0.733 - 0.680i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.222 - 0.974i)T \) |
| 73 | \( 1 + (0.365 - 0.930i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.623 + 0.781i)T \) |
| 89 | \( 1 + (0.988 - 0.149i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.683988967824266425386620703401, −23.19438300647074036572015096572, −22.30132271207261565790618587428, −21.26024162270543342271535941864, −20.477855157572830242760588829822, −19.41070155661112541648954995532, −18.84511941408148941736191668181, −17.52581972973830595243551512065, −16.727669010604956692529488755774, −16.25683071693743863749954122211, −15.40426656910560661802191860267, −14.8222078748013265549056424439, −13.845192938456612867029745833546, −12.724074392480557086725604241251, −11.484245356213086189653800150709, −10.7113518650952113485277791737, −9.61905495701403171683368278025, −8.81169776517223505503457521549, −8.255275581662878809899969284674, −7.06375746785216407247800829978, −6.00652845146830153301048847744, −4.900581571454368975274361505357, −4.35532427810887418122277125982, −3.26399847684296724938422390539, −1.12000179806482170301267974688,
0.54245190840689112293297491368, 1.738063990193276645677475812376, 3.01040105858991130470678116699, 3.58773267167846357064512973155, 5.08436929223775212622096745170, 6.35831344009083216188759835460, 7.56427951309909829892532302222, 8.01995523136379862466523360333, 8.9765082344079958410141393607, 10.40902950786569003075780125213, 10.95162239077407902420095892493, 12.062787137978279793295568082997, 12.358260374090202723724715842671, 13.50216339228396898059070860640, 14.23306024985055382335930305216, 15.36675102006525429266645418627, 16.603021401835485460501690544396, 17.48062742506391060638978075325, 18.321921332305384448269459347620, 18.974590391110960008831270002, 19.434360239111197580578874364284, 20.42163216849405550849315998710, 21.155218752412914266789096141547, 22.45427589972030204837760065221, 23.113134684060838048347359410597