L(s) = 1 | + (−0.946 − 0.323i)2-s + (0.998 − 0.0598i)3-s + (0.791 + 0.611i)4-s + (0.887 − 0.460i)5-s + (−0.963 − 0.266i)6-s + (−0.550 − 0.834i)8-s + (0.992 − 0.119i)9-s + (−0.988 + 0.149i)10-s + (0.826 + 0.563i)12-s + (0.753 − 0.657i)13-s + (0.858 − 0.512i)15-s + (0.251 + 0.967i)16-s + (0.525 + 0.850i)17-s + (−0.978 − 0.207i)18-s + (−0.978 + 0.207i)19-s + (0.983 + 0.178i)20-s + ⋯ |
L(s) = 1 | + (−0.946 − 0.323i)2-s + (0.998 − 0.0598i)3-s + (0.791 + 0.611i)4-s + (0.887 − 0.460i)5-s + (−0.963 − 0.266i)6-s + (−0.550 − 0.834i)8-s + (0.992 − 0.119i)9-s + (−0.988 + 0.149i)10-s + (0.826 + 0.563i)12-s + (0.753 − 0.657i)13-s + (0.858 − 0.512i)15-s + (0.251 + 0.967i)16-s + (0.525 + 0.850i)17-s + (−0.978 − 0.207i)18-s + (−0.978 + 0.207i)19-s + (0.983 + 0.178i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.796 - 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.796 - 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.521355385 - 0.5116096623i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.521355385 - 0.5116096623i\) |
\(L(1)\) |
\(\approx\) |
\(1.175314653 - 0.2586166081i\) |
\(L(1)\) |
\(\approx\) |
\(1.175314653 - 0.2586166081i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.946 - 0.323i)T \) |
| 3 | \( 1 + (0.998 - 0.0598i)T \) |
| 5 | \( 1 + (0.887 - 0.460i)T \) |
| 13 | \( 1 + (0.753 - 0.657i)T \) |
| 17 | \( 1 + (0.525 + 0.850i)T \) |
| 19 | \( 1 + (-0.978 + 0.207i)T \) |
| 23 | \( 1 + (0.0747 + 0.997i)T \) |
| 29 | \( 1 + (-0.691 - 0.722i)T \) |
| 31 | \( 1 + (0.913 - 0.406i)T \) |
| 37 | \( 1 + (-0.280 + 0.959i)T \) |
| 41 | \( 1 + (-0.550 - 0.834i)T \) |
| 43 | \( 1 + (0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.0149 - 0.999i)T \) |
| 53 | \( 1 + (-0.999 - 0.0299i)T \) |
| 59 | \( 1 + (-0.447 - 0.894i)T \) |
| 61 | \( 1 + (-0.999 + 0.0299i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.983 - 0.178i)T \) |
| 73 | \( 1 + (0.0149 + 0.999i)T \) |
| 79 | \( 1 + (-0.104 + 0.994i)T \) |
| 83 | \( 1 + (0.753 + 0.657i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.84741992993185987345395161126, −22.722863199499368050659557508405, −21.387827217572718648811014564753, −20.94464175757938036005106361467, −20.11511863461462169060560319382, −19.001336856513833553316700889418, −18.62558284915072626393933506994, −17.79561969885915469425407704097, −16.73442468145372375090562663487, −15.97783158675086166369991053201, −14.960952389125395551730528857447, −14.284165270991999698821187062553, −13.60393402051334432477561825359, −12.37803037957918862483524654978, −10.941134706910317503510924133211, −10.35365578241205881304357832332, −9.285051487463248936697667161395, −8.9063712127965822212204610380, −7.79398913568473336626475575837, −6.847300899117023653253175653199, −6.14275668101814157781959366403, −4.751682417504068613583437389192, −3.19381461761166608177224506255, −2.28840022526795417666155423096, −1.380760947760237968616285788329,
1.23993249287714145236201746270, 1.99192474016364454129377915266, 3.08672173848216187341352094173, 4.0836283859382123136133299967, 5.753929933906614414241445295974, 6.69431437286355944310642544075, 8.03558828926227001094704906579, 8.39585813739395504864549590225, 9.443071380323360951489342118059, 10.03545191218017662357885065529, 10.90630557338542940003026004624, 12.30627043274355218621863867464, 13.04132346114592968667251357030, 13.75628067586972470108424089381, 15.040510686117871002760518886340, 15.67557900901392286480660198882, 16.87592852833884508874418000354, 17.44621097074029208882430859058, 18.46389342462194505707034242692, 19.12533369359170474691729259561, 19.965313694921370751809017682171, 20.92158478443487018973405775518, 21.08464670445721477251137874338, 22.104004427775512667271639965431, 23.62917483199147061865980077815