L(s) = 1 | + (0.393 + 0.919i)2-s + (−0.936 − 0.351i)3-s + (−0.691 + 0.722i)4-s + (0.963 − 0.266i)5-s + (−0.0448 − 0.998i)6-s + (−0.936 − 0.351i)8-s + (0.753 + 0.657i)9-s + (0.623 + 0.781i)10-s + (0.900 − 0.433i)12-s + (−0.393 − 0.919i)13-s + (−0.995 − 0.0896i)15-s + (−0.0448 − 0.998i)16-s + (0.983 + 0.178i)17-s + (−0.309 + 0.951i)18-s + (0.309 + 0.951i)19-s + (−0.473 + 0.880i)20-s + ⋯ |
L(s) = 1 | + (0.393 + 0.919i)2-s + (−0.936 − 0.351i)3-s + (−0.691 + 0.722i)4-s + (0.963 − 0.266i)5-s + (−0.0448 − 0.998i)6-s + (−0.936 − 0.351i)8-s + (0.753 + 0.657i)9-s + (0.623 + 0.781i)10-s + (0.900 − 0.433i)12-s + (−0.393 − 0.919i)13-s + (−0.995 − 0.0896i)15-s + (−0.0448 − 0.998i)16-s + (0.983 + 0.178i)17-s + (−0.309 + 0.951i)18-s + (0.309 + 0.951i)19-s + (−0.473 + 0.880i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.255021924 + 0.4501510118i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.255021924 + 0.4501510118i\) |
\(L(1)\) |
\(\approx\) |
\(1.026109875 + 0.3428238774i\) |
\(L(1)\) |
\(\approx\) |
\(1.026109875 + 0.3428238774i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.393 + 0.919i)T \) |
| 3 | \( 1 + (-0.936 - 0.351i)T \) |
| 5 | \( 1 + (0.963 - 0.266i)T \) |
| 13 | \( 1 + (-0.393 - 0.919i)T \) |
| 17 | \( 1 + (0.983 + 0.178i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.900 - 0.433i)T \) |
| 29 | \( 1 + (-0.134 - 0.990i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.134 + 0.990i)T \) |
| 41 | \( 1 + (0.936 + 0.351i)T \) |
| 43 | \( 1 + (-0.623 - 0.781i)T \) |
| 47 | \( 1 + (0.995 - 0.0896i)T \) |
| 53 | \( 1 + (0.983 - 0.178i)T \) |
| 59 | \( 1 + (-0.936 + 0.351i)T \) |
| 61 | \( 1 + (0.983 + 0.178i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.473 + 0.880i)T \) |
| 73 | \( 1 + (-0.995 - 0.0896i)T \) |
| 79 | \( 1 + (0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.393 + 0.919i)T \) |
| 89 | \( 1 + (0.222 + 0.974i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.1244525383331775772418137502, −22.26728413405571303580267367132, −21.55636493994381178463017590625, −21.28350325241382159783500839851, −20.164051006765307503961238639082, −19.10454601826290081346326128602, −18.2121123257438907916163238257, −17.65678705370656160909881480913, −16.73430608643024342824913668957, −15.70626901443953038076041153367, −14.4967135902992490528919732489, −13.92876692710445204522760046504, −12.848531241658856820553854193338, −12.0566044127593558094002724238, −11.25991783706966871652350681636, −10.41152154570040701285644390823, −9.69187041426328645280823205140, −9.04792348471082185585374052540, −7.152209206797776678767049827839, −6.12954539696103978805062750366, −5.35413781663162475725656744065, −4.55762460731567063514176200843, −3.38470034780388093133275038841, −2.17480406458432007899914292247, −1.06367970669374951145886139928,
0.91422902936563219790820747545, 2.4704834068907452566926375819, 4.014248731650982727941193514688, 5.15619495794831500590734375868, 5.77403020667526906747095420916, 6.37756689940632692820409701544, 7.5885368365854829474106857162, 8.26944000710428604042469268035, 9.79476159286351414104397734214, 10.23774005625261101269519469425, 11.86970493701242279895862164183, 12.46722971453522961102434910095, 13.30847106069831561088150142222, 14.0374896241329175110210606144, 15.05370561401715647535363027777, 16.09627001073774543717845372469, 16.8916889762742469666500487426, 17.337838002146435184982915326001, 18.21066509783737077233470967728, 18.84399496228549887294758198144, 20.47585416341309811390850496380, 21.312908609171365690429102774758, 22.15182745644416276585744727805, 22.717214193256630748232845887755, 23.509775013694854769931637929224