L(s) = 1 | + (0.900 + 0.433i)2-s + (0.222 + 0.974i)3-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)5-s + (−0.222 + 0.974i)6-s + (0.222 + 0.974i)8-s + (−0.900 + 0.433i)9-s + (−0.222 + 0.974i)10-s + (−0.623 + 0.781i)12-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 18-s + 19-s + (−0.623 + 0.781i)20-s + ⋯ |
L(s) = 1 | + (0.900 + 0.433i)2-s + (0.222 + 0.974i)3-s + (0.623 + 0.781i)4-s + (0.222 + 0.974i)5-s + (−0.222 + 0.974i)6-s + (0.222 + 0.974i)8-s + (−0.900 + 0.433i)9-s + (−0.222 + 0.974i)10-s + (−0.623 + 0.781i)12-s + (−0.900 − 0.433i)13-s + (−0.900 + 0.433i)15-s + (−0.222 + 0.974i)16-s + (0.623 − 0.781i)17-s − 18-s + 19-s + (−0.623 + 0.781i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.914 + 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.914 + 0.404i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5104995529 + 2.414394773i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5104995529 + 2.414394773i\) |
\(L(1)\) |
\(\approx\) |
\(1.238020122 + 1.375696215i\) |
\(L(1)\) |
\(\approx\) |
\(1.238020122 + 1.375696215i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.900 + 0.433i)T \) |
| 3 | \( 1 + (0.222 + 0.974i)T \) |
| 5 | \( 1 + (0.222 + 0.974i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (0.623 - 0.781i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (-0.623 + 0.781i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.623 - 0.781i)T \) |
| 41 | \( 1 + (-0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (0.900 + 0.433i)T \) |
| 53 | \( 1 + (0.623 + 0.781i)T \) |
| 59 | \( 1 + (0.222 - 0.974i)T \) |
| 61 | \( 1 + (0.623 - 0.781i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.900 + 0.433i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.900 + 0.433i)T \) |
| 89 | \( 1 + (0.900 - 0.433i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.20779837242988948182755835136, −22.24856186632167043071010530105, −21.32356601082284792899969065004, −20.49546288726641970088145536924, −19.862487872867237101966052452186, −19.11974424860822949147331451524, −18.23435214493603545227609284058, −17.00395778175065174753622191183, −16.41110085613562558097414727397, −14.99503066857085083371928311266, −14.38975298361385969192619780613, −13.37316238012571622590451937603, −12.86547570110393342140005605357, −12.07240990777894544902097806567, −11.44658605537505391386652602492, −10.01970967864435185535043854793, −9.17107362845145243182408684785, −7.97408724792590118771361106053, −7.04978548914588758967752213281, −5.96409991429598574764211441816, −5.22040981008867518019757955420, −4.1285489747342377402450876615, −2.87783297800609022174314649520, −1.87774194622425303922299987890, −0.94956952402350678237884787572,
2.324202649440059958895356219683, 3.154350782395528616096123372924, 3.85489864193382180682044143092, 5.293228558968270595701825275539, 5.55538665628071966015754039022, 7.15571422863104519982895770762, 7.57765913677172705086325189516, 9.07007074894966443042120138009, 9.968246953591038049410113303649, 10.95719377730197227678015205876, 11.63782282019340084792972340000, 12.78898268841055821473004268947, 14.06720026888699887667324369491, 14.31244833443534114997338242966, 15.25771416235575913580249852039, 15.84967583031898246745844375269, 16.84849373734286493397337102990, 17.59638783865447478798500131353, 18.7727224277830860658636504045, 20.00732321843212699670303418972, 20.57942996619918185260085436981, 21.68285213677968385863322010951, 22.0551119725750068966978431940, 22.76430123497759166842612840216, 23.51624275806585429562441177278