L(s) = 1 | + (0.550 − 0.834i)2-s + (−0.983 − 0.178i)3-s + (−0.393 − 0.919i)4-s + (−0.134 − 0.990i)5-s + (−0.691 + 0.722i)6-s + (−0.983 − 0.178i)8-s + (0.936 + 0.351i)9-s + (−0.900 − 0.433i)10-s + (0.222 + 0.974i)12-s + (−0.550 + 0.834i)13-s + (−0.0448 + 0.998i)15-s + (−0.691 + 0.722i)16-s + (−0.995 − 0.0896i)17-s + (0.809 − 0.587i)18-s + (−0.809 − 0.587i)19-s + (−0.858 + 0.512i)20-s + ⋯ |
L(s) = 1 | + (0.550 − 0.834i)2-s + (−0.983 − 0.178i)3-s + (−0.393 − 0.919i)4-s + (−0.134 − 0.990i)5-s + (−0.691 + 0.722i)6-s + (−0.983 − 0.178i)8-s + (0.936 + 0.351i)9-s + (−0.900 − 0.433i)10-s + (0.222 + 0.974i)12-s + (−0.550 + 0.834i)13-s + (−0.0448 + 0.998i)15-s + (−0.691 + 0.722i)16-s + (−0.995 − 0.0896i)17-s + (0.809 − 0.587i)18-s + (−0.809 − 0.587i)19-s + (−0.858 + 0.512i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.314 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.314 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.04633472473 - 0.03347269601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.04633472473 - 0.03347269601i\) |
\(L(1)\) |
\(\approx\) |
\(0.5228006950 - 0.4477679740i\) |
\(L(1)\) |
\(\approx\) |
\(0.5228006950 - 0.4477679740i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.550 - 0.834i)T \) |
| 3 | \( 1 + (-0.983 - 0.178i)T \) |
| 5 | \( 1 + (-0.134 - 0.990i)T \) |
| 13 | \( 1 + (-0.550 + 0.834i)T \) |
| 17 | \( 1 + (-0.995 - 0.0896i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.222 + 0.974i)T \) |
| 29 | \( 1 + (-0.753 - 0.657i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (0.753 + 0.657i)T \) |
| 41 | \( 1 + (0.983 + 0.178i)T \) |
| 43 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.0448 + 0.998i)T \) |
| 53 | \( 1 + (-0.995 + 0.0896i)T \) |
| 59 | \( 1 + (-0.983 + 0.178i)T \) |
| 61 | \( 1 + (-0.995 - 0.0896i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.858 + 0.512i)T \) |
| 73 | \( 1 + (-0.0448 + 0.998i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.550 - 0.834i)T \) |
| 89 | \( 1 + (-0.623 + 0.781i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.96766259783746140567498629648, −23.07937843726696956260411376497, −22.57607923865848825389543221496, −21.95518307090817632900956080910, −21.23601534434505397455103475733, −19.96963028007266990035044027947, −18.629204226651688720882899502853, −17.99699055464180665132073528684, −17.293482836970618458682336213056, −16.42807971127637393623830133970, −15.54451749503017590169947822001, −14.9130059262470939652810749781, −14.10567892613922661297505144731, −12.79227730816801773502635255290, −12.35556510662858847142538970937, −11.082865575221754356126268068306, −10.5364722633414045045346463702, −9.28900151870856899960750851073, −7.97753492137837392968916789200, −7.078752356208877481535887572300, −6.36945642795097818644908770876, −5.57915311093959788143236718357, −4.51611309474956280679522593914, −3.64710725052168956810441331953, −2.367926510319354088797988287329,
0.028405949083501563121484969477, 1.3848948925753656341617539020, 2.34518851432904081840043470480, 4.24040742411446832704492212699, 4.49770452957140154131710486162, 5.61991550833895968832591001723, 6.418509471332077539713217661839, 7.70844541938854871160131287179, 9.19524542678446002020439812277, 9.688534419736394162780308741431, 11.16309979939583661977623510421, 11.39875398706686170442220949356, 12.48994978858903752650658900719, 13.00779065887249301496815937892, 13.82268824747187609395799533369, 15.17305998776614150465315306689, 15.9274917667782629323998605577, 17.03195549671856688075145284159, 17.60265022159820474157024179531, 18.76141244198836257707306178702, 19.46844035498726650711872700327, 20.29962745986384198082104484045, 21.32048017912012423141771254659, 21.810841728460874908804620780466, 22.700475641823820546656590271743