L(s) = 1 | + (−0.575 + 0.817i)2-s + (−0.251 − 0.967i)3-s + (−0.337 − 0.941i)4-s + (0.447 + 0.894i)5-s + (0.936 + 0.351i)6-s + (0.963 + 0.266i)8-s + (−0.873 + 0.486i)9-s + (−0.988 − 0.149i)10-s + (−0.826 + 0.563i)12-s + (−0.995 − 0.0896i)13-s + (0.753 − 0.657i)15-s + (−0.772 + 0.635i)16-s + (−0.925 + 0.379i)17-s + (0.104 − 0.994i)18-s + (−0.104 − 0.994i)19-s + (0.691 − 0.722i)20-s + ⋯ |
L(s) = 1 | + (−0.575 + 0.817i)2-s + (−0.251 − 0.967i)3-s + (−0.337 − 0.941i)4-s + (0.447 + 0.894i)5-s + (0.936 + 0.351i)6-s + (0.963 + 0.266i)8-s + (−0.873 + 0.486i)9-s + (−0.988 − 0.149i)10-s + (−0.826 + 0.563i)12-s + (−0.995 − 0.0896i)13-s + (0.753 − 0.657i)15-s + (−0.772 + 0.635i)16-s + (−0.925 + 0.379i)17-s + (0.104 − 0.994i)18-s + (−0.104 − 0.994i)19-s + (0.691 − 0.722i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1519195113 - 0.2539400946i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1519195113 - 0.2539400946i\) |
\(L(1)\) |
\(\approx\) |
\(0.5733034430 + 0.02382741871i\) |
\(L(1)\) |
\(\approx\) |
\(0.5733034430 + 0.02382741871i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.575 + 0.817i)T \) |
| 3 | \( 1 + (-0.251 - 0.967i)T \) |
| 5 | \( 1 + (0.447 + 0.894i)T \) |
| 13 | \( 1 + (-0.995 - 0.0896i)T \) |
| 17 | \( 1 + (-0.925 + 0.379i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (0.0747 - 0.997i)T \) |
| 29 | \( 1 + (-0.473 - 0.880i)T \) |
| 31 | \( 1 + (0.978 - 0.207i)T \) |
| 37 | \( 1 + (-0.999 - 0.0299i)T \) |
| 41 | \( 1 + (-0.963 - 0.266i)T \) |
| 43 | \( 1 + (-0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.946 - 0.323i)T \) |
| 53 | \( 1 + (0.791 - 0.611i)T \) |
| 59 | \( 1 + (-0.712 - 0.701i)T \) |
| 61 | \( 1 + (0.791 + 0.611i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.691 - 0.722i)T \) |
| 73 | \( 1 + (-0.946 - 0.323i)T \) |
| 79 | \( 1 + (-0.669 - 0.743i)T \) |
| 83 | \( 1 + (-0.995 + 0.0896i)T \) |
| 89 | \( 1 + (0.733 + 0.680i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.53330104876618785263268511941, −22.446783344258822666037804309846, −21.80770905363640067944551914956, −21.15373865046019161347425801650, −20.32178126131293414432049461958, −19.87609662533983004875704805648, −18.70812804900871186760542004945, −17.494563519904030277234251543322, −17.172061442375670935117728551271, −16.32428571179563808500204121149, −15.49497042681586970185015497345, −14.19312499786878898191853512378, −13.28934882886226347984842323949, −12.19320681783110475879585963939, −11.68193780772745516600192357310, −10.46363092215019975447845439134, −9.88904484078732101536260292021, −9.06073422413475995240080938695, −8.44019348927183904203349021828, −7.10427646549714563020116633789, −5.55817160214411079127978656653, −4.74209449786911568336703640546, −3.87553992789204261014853737043, −2.67165828241774045214263583077, −1.46383411602925702206970528144,
0.1902635918268910306755811774, 1.85736202268100662419971826295, 2.668004146548519989668015465675, 4.624761067904837472797199018211, 5.69033119499022657767238692223, 6.64275900784132351939771813439, 7.014429626991844258295169631993, 8.0416130543822052888081059747, 8.985880708530800900008103795419, 10.11766218678833585069201457615, 10.87566217607631908449341840202, 11.862303208399506030724929412824, 13.210551466947965812542126763363, 13.7626862001112063183215590397, 14.76684848503864273417010906920, 15.35129336742116690752401322641, 16.71992506639582116069600642733, 17.48043880727132464100214346039, 17.857116008269284329408383933824, 18.908494925580409614447485502591, 19.305964455775432497281229180710, 20.29174123751481485608270498090, 21.90897234713058760825502626695, 22.51430784912120918719607114315, 23.25562858251905387164989266194