L(s) = 1 | + (0.280 − 0.959i)2-s + (−0.193 − 0.981i)3-s + (−0.842 − 0.538i)4-s + (−0.0149 + 0.999i)5-s + (−0.995 − 0.0896i)6-s + (−0.753 + 0.657i)8-s + (−0.925 + 0.379i)9-s + (0.955 + 0.294i)10-s + (−0.365 + 0.930i)12-s + (−0.691 − 0.722i)13-s + (0.983 − 0.178i)15-s + (0.420 + 0.907i)16-s + (−0.163 + 0.986i)17-s + (0.104 + 0.994i)18-s + (−0.104 + 0.994i)19-s + (0.550 − 0.834i)20-s + ⋯ |
L(s) = 1 | + (0.280 − 0.959i)2-s + (−0.193 − 0.981i)3-s + (−0.842 − 0.538i)4-s + (−0.0149 + 0.999i)5-s + (−0.995 − 0.0896i)6-s + (−0.753 + 0.657i)8-s + (−0.925 + 0.379i)9-s + (0.955 + 0.294i)10-s + (−0.365 + 0.930i)12-s + (−0.691 − 0.722i)13-s + (0.983 − 0.178i)15-s + (0.420 + 0.907i)16-s + (−0.163 + 0.986i)17-s + (0.104 + 0.994i)18-s + (−0.104 + 0.994i)19-s + (0.550 − 0.834i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0330i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0330i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7800909922 + 0.01289181611i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7800909922 + 0.01289181611i\) |
\(L(1)\) |
\(\approx\) |
\(0.7621139374 - 0.3798035142i\) |
\(L(1)\) |
\(\approx\) |
\(0.7621139374 - 0.3798035142i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.280 - 0.959i)T \) |
| 3 | \( 1 + (-0.193 - 0.981i)T \) |
| 5 | \( 1 + (-0.0149 + 0.999i)T \) |
| 13 | \( 1 + (-0.691 - 0.722i)T \) |
| 17 | \( 1 + (-0.163 + 0.986i)T \) |
| 19 | \( 1 + (-0.104 + 0.994i)T \) |
| 23 | \( 1 + (-0.988 - 0.149i)T \) |
| 29 | \( 1 + (0.963 + 0.266i)T \) |
| 31 | \( 1 + (0.978 + 0.207i)T \) |
| 37 | \( 1 + (0.251 + 0.967i)T \) |
| 41 | \( 1 + (0.753 - 0.657i)T \) |
| 43 | \( 1 + (0.222 + 0.974i)T \) |
| 47 | \( 1 + (0.337 + 0.941i)T \) |
| 53 | \( 1 + (-0.772 + 0.635i)T \) |
| 59 | \( 1 + (0.946 - 0.323i)T \) |
| 61 | \( 1 + (-0.772 - 0.635i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.550 - 0.834i)T \) |
| 73 | \( 1 + (-0.337 + 0.941i)T \) |
| 79 | \( 1 + (-0.669 + 0.743i)T \) |
| 83 | \( 1 + (-0.691 + 0.722i)T \) |
| 89 | \( 1 + (-0.0747 - 0.997i)T \) |
| 97 | \( 1 + (-0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.48983939213292296642136886193, −22.6401110561329916739930432064, −21.74383796318476720813679454167, −21.24097071845320989068371466998, −20.24816036814214428563629900951, −19.34041856893041424285762544416, −17.82304783719387694701417070029, −17.338181287345095371573048583707, −16.33922165718506467917910389906, −16.00426420418204960076306912451, −15.13679658758086842918622533735, −14.123265181242841234348336053055, −13.451573420723588903375436163006, −12.18702573855366062314008885383, −11.62231693388005100506164468900, −10.04685435137303409481871451898, −9.28475451291086594567440804103, −8.6855904309146612275389676270, −7.59416075616082974409383557324, −6.42091219142921505848405746088, −5.4047853632949678325119419669, −4.63445535121661540878210896213, −4.11401855827740433340767749213, −2.64906051698367106428857345981, −0.4033376731779168933937278773,
1.32473444644063599031135774763, 2.41452527303418032410852795621, 3.13094182814599483331976394109, 4.39907392875786800171966324935, 5.79677528158041887346920506715, 6.35880928609123171083886103499, 7.70043100966275653282810994544, 8.41257061580548943485297407140, 9.958613653897082369268089857063, 10.52063183714207781047411785164, 11.47277106062766909812989891148, 12.300796900728486745425924806551, 12.8976562500427327331001202972, 14.08688634977012041154759387278, 14.41661673992123058390172613872, 15.53209939376745524342499059637, 17.184112990362457650335323372197, 17.79816948739261265642397984298, 18.53076961455281927791201216628, 19.33145495644401090339576581686, 19.78576344238500234781263801854, 20.90568696822764338330643195508, 22.00820272774099565760344761558, 22.49107869585317025336187015556, 23.27214213666345009045800721681