L(s) = 1 | + (−0.163 + 0.986i)2-s + (−0.999 + 0.0299i)3-s + (−0.946 − 0.323i)4-s + (0.971 − 0.237i)5-s + (0.134 − 0.990i)6-s + (0.473 − 0.880i)8-s + (0.998 − 0.0598i)9-s + (0.0747 + 0.997i)10-s + (0.955 + 0.294i)12-s + (0.936 − 0.351i)13-s + (−0.963 + 0.266i)15-s + (0.791 + 0.611i)16-s + (−0.873 − 0.486i)17-s + (−0.104 + 0.994i)18-s + (−0.104 − 0.994i)19-s + (−0.995 − 0.0896i)20-s + ⋯ |
L(s) = 1 | + (−0.163 + 0.986i)2-s + (−0.999 + 0.0299i)3-s + (−0.946 − 0.323i)4-s + (0.971 − 0.237i)5-s + (0.134 − 0.990i)6-s + (0.473 − 0.880i)8-s + (0.998 − 0.0598i)9-s + (0.0747 + 0.997i)10-s + (0.955 + 0.294i)12-s + (0.936 − 0.351i)13-s + (−0.963 + 0.266i)15-s + (0.791 + 0.611i)16-s + (−0.873 − 0.486i)17-s + (−0.104 + 0.994i)18-s + (−0.104 − 0.994i)19-s + (−0.995 − 0.0896i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.929 - 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7914397764 - 0.1516100431i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7914397764 - 0.1516100431i\) |
\(L(1)\) |
\(\approx\) |
\(0.7414432148 + 0.1547169611i\) |
\(L(1)\) |
\(\approx\) |
\(0.7414432148 + 0.1547169611i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.163 + 0.986i)T \) |
| 3 | \( 1 + (-0.999 + 0.0299i)T \) |
| 5 | \( 1 + (0.971 - 0.237i)T \) |
| 13 | \( 1 + (0.936 - 0.351i)T \) |
| 17 | \( 1 + (-0.873 - 0.486i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (-0.733 - 0.680i)T \) |
| 29 | \( 1 + (-0.393 + 0.919i)T \) |
| 31 | \( 1 + (-0.978 + 0.207i)T \) |
| 37 | \( 1 + (-0.599 - 0.800i)T \) |
| 41 | \( 1 + (0.473 - 0.880i)T \) |
| 43 | \( 1 + (-0.900 - 0.433i)T \) |
| 47 | \( 1 + (0.712 - 0.701i)T \) |
| 53 | \( 1 + (0.0149 - 0.999i)T \) |
| 59 | \( 1 + (0.525 - 0.850i)T \) |
| 61 | \( 1 + (0.0149 + 0.999i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.995 + 0.0896i)T \) |
| 73 | \( 1 + (0.712 + 0.701i)T \) |
| 79 | \( 1 + (0.669 + 0.743i)T \) |
| 83 | \( 1 + (0.936 + 0.351i)T \) |
| 89 | \( 1 + (0.365 + 0.930i)T \) |
| 97 | \( 1 + (0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.22571217564468057858090669180, −22.39831198146469858122071156424, −21.78726505167667782953470431262, −21.12145168380456296629419077915, −20.32927927054145647710793558127, −19.03782453498315413111409783206, −18.399347730597998512836055288229, −17.72677972343301172666271140957, −17.04270969616316403232928797025, −16.17468419251194737656336748311, −14.83514498896195982307409706114, −13.60702849720589567282842158294, −13.18631790982972195067388477247, −12.1445477396177018236376060781, −11.28141205311944147265916337211, −10.58815694411550359271866295865, −9.846406344011125187164881491481, −8.97774569650946037501181440554, −7.7289324094751892825452491724, −6.30961494135660493269601094958, −5.725099563768378831939738583324, −4.528118531109999397378168804735, −3.58622834060117514617487195245, −2.04168410680163144105294033882, −1.36470773500424247103455688127,
0.5526839846432739689060945419, 1.90336075270141713751668349729, 3.88086171171546049275202516785, 5.019541809297920977036501629531, 5.586333555715855640570809295716, 6.52600442018082071958515938743, 7.127816651202996219331325991758, 8.61237327606754399818583663026, 9.27641239365325470715230414190, 10.361357796137125591688036590255, 11.00719496538181372454466722392, 12.47976795747934332601410549392, 13.22334593257961372187480820714, 13.914359068928336806461533594302, 15.09946424412999965684814875892, 16.03891750127314105676604645684, 16.52960544097874512341201845148, 17.58821550834706229810828616565, 17.95022171849828059418911722351, 18.62406280798321422312835877824, 20.02847424988232089326313255664, 21.132635228335821766542081929587, 22.151850063210602095537389595978, 22.420808748612621851329379653361, 23.60243372050289237758751549447