L(s) = 1 | + (−0.712 + 0.701i)2-s + (0.280 − 0.959i)3-s + (0.0149 − 0.999i)4-s + (0.646 − 0.762i)5-s + (0.473 + 0.880i)6-s + (0.691 + 0.722i)8-s + (−0.842 − 0.538i)9-s + (0.0747 + 0.997i)10-s + (−0.955 − 0.294i)12-s + (−0.963 − 0.266i)13-s + (−0.550 − 0.834i)15-s + (−0.999 − 0.0299i)16-s + (0.992 − 0.119i)17-s + (0.978 − 0.207i)18-s + (−0.978 − 0.207i)19-s + (−0.753 − 0.657i)20-s + ⋯ |
L(s) = 1 | + (−0.712 + 0.701i)2-s + (0.280 − 0.959i)3-s + (0.0149 − 0.999i)4-s + (0.646 − 0.762i)5-s + (0.473 + 0.880i)6-s + (0.691 + 0.722i)8-s + (−0.842 − 0.538i)9-s + (0.0747 + 0.997i)10-s + (−0.955 − 0.294i)12-s + (−0.963 − 0.266i)13-s + (−0.550 − 0.834i)15-s + (−0.999 − 0.0299i)16-s + (0.992 − 0.119i)17-s + (0.978 − 0.207i)18-s + (−0.978 − 0.207i)19-s + (−0.753 − 0.657i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.602 - 0.797i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3640992670 - 0.7313381626i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3640992670 - 0.7313381626i\) |
\(L(1)\) |
\(\approx\) |
\(0.7345512645 - 0.2830617817i\) |
\(L(1)\) |
\(\approx\) |
\(0.7345512645 - 0.2830617817i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.712 + 0.701i)T \) |
| 3 | \( 1 + (0.280 - 0.959i)T \) |
| 5 | \( 1 + (0.646 - 0.762i)T \) |
| 13 | \( 1 + (-0.963 - 0.266i)T \) |
| 17 | \( 1 + (0.992 - 0.119i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + (-0.733 - 0.680i)T \) |
| 29 | \( 1 + (0.995 + 0.0896i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (0.575 - 0.817i)T \) |
| 41 | \( 1 + (-0.691 - 0.722i)T \) |
| 43 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.447 + 0.894i)T \) |
| 53 | \( 1 + (-0.599 + 0.800i)T \) |
| 59 | \( 1 + (-0.971 - 0.237i)T \) |
| 61 | \( 1 + (-0.599 - 0.800i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.753 - 0.657i)T \) |
| 73 | \( 1 + (-0.447 + 0.894i)T \) |
| 79 | \( 1 + (0.104 + 0.994i)T \) |
| 83 | \( 1 + (-0.963 + 0.266i)T \) |
| 89 | \( 1 + (-0.365 - 0.930i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.49231670075440885528249133088, −22.43713336235238049367237029849, −21.648172752906985446135666762982, −21.42645410311437480538123102317, −20.379479539921368735436130251593, −19.52199769691326994462312619188, −18.85356745073786203334661221327, −17.80577491492825523827307449782, −17.04060447522741823965737068862, −16.38374055402368967141565213235, −15.18997262891464773931836267723, −14.395215544489793325010410451058, −13.55127344397067499783034544169, −12.302780435316782564294725643244, −11.40414640583442462769151631308, −10.37247538009738764578260996279, −10.03141115069551521043450376199, −9.20935126115881742914895479149, −8.18670615560168293277964756299, −7.21610802333337743218435437636, −5.94161866726444728603796437985, −4.670985426689245081539486665794, −3.5686562017562075944947336941, −2.73511721011521667665947906911, −1.80266323935330350713521951220,
0.50289404477667227287264627748, 1.686444439219380671405278004554, 2.581070691920823924079678281267, 4.55642878888221869291535983935, 5.65841635810786723013670386922, 6.314397540471754820923185954065, 7.43297326108524596999356609516, 8.1203234251116666167161488731, 9.00731185659427814841488690225, 9.75655467984330263122391093227, 10.80259527711632150049512464477, 12.24998522620421040438192189441, 12.776543742779070231882217798353, 14.05572840663294733802434945520, 14.386603163976996240460535255871, 15.5737300451009345220770548154, 16.75910634827334574038481415935, 17.17000911095028100965112948832, 18.02189621449757256899648194589, 18.764874551553230232644750829170, 19.694228829556809851929138457750, 20.23699247070791742325937925687, 21.30576611922339715742607484638, 22.55766495242157471884224894607, 23.611697437550757166162227140535