L(s) = 1 | + (0.936 + 0.351i)2-s + (0.473 + 0.880i)3-s + (0.753 + 0.657i)4-s + (−0.691 + 0.722i)5-s + (0.134 + 0.990i)6-s + (0.473 + 0.880i)8-s + (−0.550 + 0.834i)9-s + (−0.900 + 0.433i)10-s + (−0.222 + 0.974i)12-s + (0.936 + 0.351i)13-s + (−0.963 − 0.266i)15-s + (0.134 + 0.990i)16-s + (0.858 + 0.512i)17-s + (−0.809 + 0.587i)18-s + (−0.809 − 0.587i)19-s + (−0.995 + 0.0896i)20-s + ⋯ |
L(s) = 1 | + (0.936 + 0.351i)2-s + (0.473 + 0.880i)3-s + (0.753 + 0.657i)4-s + (−0.691 + 0.722i)5-s + (0.134 + 0.990i)6-s + (0.473 + 0.880i)8-s + (−0.550 + 0.834i)9-s + (−0.900 + 0.433i)10-s + (−0.222 + 0.974i)12-s + (0.936 + 0.351i)13-s + (−0.963 − 0.266i)15-s + (0.134 + 0.990i)16-s + (0.858 + 0.512i)17-s + (−0.809 + 0.587i)18-s + (−0.809 − 0.587i)19-s + (−0.995 + 0.0896i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.784 + 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.784 + 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8256203164 + 2.376779125i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8256203164 + 2.376779125i\) |
\(L(1)\) |
\(\approx\) |
\(1.381984901 + 1.282333753i\) |
\(L(1)\) |
\(\approx\) |
\(1.381984901 + 1.282333753i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.936 + 0.351i)T \) |
| 3 | \( 1 + (0.473 + 0.880i)T \) |
| 5 | \( 1 + (-0.691 + 0.722i)T \) |
| 13 | \( 1 + (0.936 + 0.351i)T \) |
| 17 | \( 1 + (0.858 + 0.512i)T \) |
| 19 | \( 1 + (-0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.222 - 0.974i)T \) |
| 29 | \( 1 + (-0.393 - 0.919i)T \) |
| 31 | \( 1 + (0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.393 - 0.919i)T \) |
| 41 | \( 1 + (0.473 + 0.880i)T \) |
| 43 | \( 1 + (-0.900 + 0.433i)T \) |
| 47 | \( 1 + (-0.963 + 0.266i)T \) |
| 53 | \( 1 + (0.858 - 0.512i)T \) |
| 59 | \( 1 + (0.473 - 0.880i)T \) |
| 61 | \( 1 + (0.858 + 0.512i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.995 - 0.0896i)T \) |
| 73 | \( 1 + (-0.963 - 0.266i)T \) |
| 79 | \( 1 + (0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.936 - 0.351i)T \) |
| 89 | \( 1 + (0.623 + 0.781i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.4218981377063715675654414477, −22.493971154068362204232503364081, −21.11213889283353800189046396412, −20.61419995038691837121422065158, −19.90627118939877365002264130683, −19.06705455350567700489612271228, −18.46320623952680566919930785241, −17.07112101848003837515031009140, −16.10303942306802788589014675282, −15.2388023304523375243117723228, −14.44067255565082745821941838746, −13.4073384231479763258856834406, −12.95587018729239825108121819011, −11.98499892930076072073724875410, −11.51664236930375502300085811417, −10.22273666985504999690376810350, −8.9683119777423282197408400127, −8.01252020836332158897178897657, −7.20616086466786316652882630318, −6.06712910484072017531409319774, −5.22522552925949537861461841876, −3.86398037445610766368293435897, −3.28586158483199746350304103244, −1.88517603538996852363937783309, −0.952462374821991207812604686890,
2.192060511679489062854935904954, 3.23570144112914393015460636776, 3.91818246688104484595874431594, 4.70606798214856622779168755311, 5.96166628785908555634084414852, 6.83375155778943359695120865015, 8.03054668193653636777154847003, 8.5762344897499814463114342085, 10.11528657373313612789887047185, 10.945990192754737431870481927710, 11.59264528382503313498035658243, 12.764865593329473045546177511387, 13.77271384554915742399587634482, 14.64191642367496744967440406634, 15.019437681634422867401803092654, 16.04721461939710629586209803002, 16.43973966219715321937572854671, 17.6875456922163320793014592864, 19.03668333059355244492558888262, 19.68740686454667364457589895730, 20.72582142119772213032694964605, 21.34312070175791901277840775590, 22.06849781844713209460809716785, 23.0446742852142582921844319663, 23.36588317970073306052993306678