L(s) = 1 | + (0.988 − 0.149i)2-s + (−0.826 − 0.563i)3-s + (0.955 − 0.294i)4-s + (−0.0747 + 0.997i)5-s + (−0.900 − 0.433i)6-s + (0.900 − 0.433i)8-s + (0.365 + 0.930i)9-s + (0.0747 + 0.997i)10-s + (−0.955 − 0.294i)12-s + (0.623 + 0.781i)13-s + (0.623 − 0.781i)15-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (0.5 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.222 + 0.974i)20-s + ⋯ |
L(s) = 1 | + (0.988 − 0.149i)2-s + (−0.826 − 0.563i)3-s + (0.955 − 0.294i)4-s + (−0.0747 + 0.997i)5-s + (−0.900 − 0.433i)6-s + (0.900 − 0.433i)8-s + (0.365 + 0.930i)9-s + (0.0747 + 0.997i)10-s + (−0.955 − 0.294i)12-s + (0.623 + 0.781i)13-s + (0.623 − 0.781i)15-s + (0.826 − 0.563i)16-s + (−0.733 + 0.680i)17-s + (0.5 + 0.866i)18-s + (−0.5 + 0.866i)19-s + (0.222 + 0.974i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.821121065 + 0.5511031405i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.821121065 + 0.5511031405i\) |
\(L(1)\) |
\(\approx\) |
\(1.493279981 + 0.07128437954i\) |
\(L(1)\) |
\(\approx\) |
\(1.493279981 + 0.07128437954i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.988 - 0.149i)T \) |
| 3 | \( 1 + (-0.826 - 0.563i)T \) |
| 5 | \( 1 + (-0.0747 + 0.997i)T \) |
| 13 | \( 1 + (0.623 + 0.781i)T \) |
| 17 | \( 1 + (-0.733 + 0.680i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.733 - 0.680i)T \) |
| 29 | \( 1 + (0.222 + 0.974i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.955 + 0.294i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.988 - 0.149i)T \) |
| 53 | \( 1 + (0.955 - 0.294i)T \) |
| 59 | \( 1 + (-0.0747 - 0.997i)T \) |
| 61 | \( 1 + (0.955 + 0.294i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.222 + 0.974i)T \) |
| 73 | \( 1 + (-0.988 - 0.149i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.623 - 0.781i)T \) |
| 89 | \( 1 + (-0.365 - 0.930i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.396053314078224396035106404033, −22.46914816570405602392231768556, −21.85252750973549380644181851757, −20.87513178015026698538636570934, −20.4554215020705807521881984987, −19.49707952399651271233163825495, −17.90485032982854167963496414791, −17.2246517797949396218494778079, −16.39060502468896579940134863215, −15.56151412140165833331998549933, −15.273775832902966125255968610448, −13.66501612287828721218996734266, −13.13412071523030842209659006668, −12.12557445999249793108065431526, −11.50265693061589942884733317129, −10.63431351764165995052243011702, −9.51737440065436055592214786552, −8.40147067719522903625407666610, −7.24154544827512866607225867167, −6.04804704142198324120459839423, −5.48714678681632865774156400500, −4.466347237109882249413025650445, −3.93501655606736129928344166536, −2.447156986134096466318686041709, −0.833805381458702898785902230823,
1.54005479299361176769624718967, 2.43193353353331935860486688347, 3.7572744002748286136154890444, 4.62602316729805263154157199870, 5.98888811459826626229685602006, 6.41250364774854224835483222447, 7.192305051690820522450719517033, 8.33537010169261355779469413605, 10.21321876237263773110424391074, 10.74931227642129910743019468729, 11.55360698523008307168957787379, 12.295633944092617331960347070672, 13.21199978742349927763284231362, 14.05429757922494988614123843001, 14.7801685055598854284019750829, 15.879818680168951680661683443887, 16.545587545778695062625349476899, 17.67996376082041012630429830371, 18.60781393648263924505181988515, 19.20486073092589402758517293306, 20.1861256493956152715163975351, 21.45955690392970202308504617308, 21.931472479413603255756254341665, 22.72148229547804071442957157138, 23.47452080846377580208745927697