L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.623 − 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.623 − 0.781i)5-s + (0.623 − 0.781i)6-s + (−0.623 − 0.781i)8-s + (−0.222 + 0.974i)9-s + (0.623 − 0.781i)10-s + (0.900 + 0.433i)12-s + (−0.222 − 0.974i)13-s + (−0.222 + 0.974i)15-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 18-s + 19-s + (0.900 + 0.433i)20-s + ⋯ |
L(s) = 1 | + (0.222 + 0.974i)2-s + (−0.623 − 0.781i)3-s + (−0.900 + 0.433i)4-s + (−0.623 − 0.781i)5-s + (0.623 − 0.781i)6-s + (−0.623 − 0.781i)8-s + (−0.222 + 0.974i)9-s + (0.623 − 0.781i)10-s + (0.900 + 0.433i)12-s + (−0.222 − 0.974i)13-s + (−0.222 + 0.974i)15-s + (0.623 − 0.781i)16-s + (−0.900 − 0.433i)17-s − 18-s + 19-s + (0.900 + 0.433i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03084826477 + 0.1731454482i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03084826477 + 0.1731454482i\) |
\(L(1)\) |
\(\approx\) |
\(0.5928733855 + 0.1035503454i\) |
\(L(1)\) |
\(\approx\) |
\(0.5928733855 + 0.1035503454i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.222 + 0.974i)T \) |
| 3 | \( 1 + (-0.623 - 0.781i)T \) |
| 5 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (-0.222 - 0.974i)T \) |
| 17 | \( 1 + (-0.900 - 0.433i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 + (0.900 + 0.433i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (-0.900 - 0.433i)T \) |
| 41 | \( 1 + (0.623 + 0.781i)T \) |
| 43 | \( 1 + (-0.623 + 0.781i)T \) |
| 47 | \( 1 + (0.222 + 0.974i)T \) |
| 53 | \( 1 + (-0.900 + 0.433i)T \) |
| 59 | \( 1 + (-0.623 + 0.781i)T \) |
| 61 | \( 1 + (-0.900 - 0.433i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.900 + 0.433i)T \) |
| 73 | \( 1 + (-0.222 + 0.974i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.222 + 0.974i)T \) |
| 89 | \( 1 + (0.222 - 0.974i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.765621010362860358465742609735, −22.056408567001243197103616048107, −21.687505308963163398435791764568, −20.53870117721310319829712778784, −19.867182371896781741666490385056, −18.916799623522356761620784296474, −18.13021250814784495941347165913, −17.350930656247184400544591243400, −16.15290293174861672678437247769, −15.36262933995487520150426397259, −14.459264466021133338900782458247, −13.73665463434069203792637482805, −12.24993376093448007815323341333, −11.78696440186599854589710470311, −10.95701310823334762538361840282, −10.30833229377656697771595202596, −9.41897165814804155393329749781, −8.45137801272409606312303557849, −6.95562525472208686340269175579, −5.97189356527757410553604219774, −4.778045284580301966177102995607, −4.027968612495926457448474293615, −3.22906600929264967541154040942, −1.959706551956368609388156238269, −0.104136316640896682715530276946,
1.2078138332597902499395840553, 3.057962757497157282997925904101, 4.43632619365159572566304844605, 5.21896444238399269018850848236, 5.99717748685895694668904432172, 7.17487759663619088618780321087, 7.76380739660639119015404213335, 8.57681581844388082308075045630, 9.666831889244968599569983777332, 11.08993095133642243665860250763, 12.098264854876750843413629015656, 12.71024060984719116662655699145, 13.47292523377329896489679112254, 14.36834721198877860605946828830, 15.753598557649104776412360531794, 15.993280952508197654230811220059, 17.055268559377644933914284263015, 17.79483658547536526768013203107, 18.36747093313349665641692499803, 19.60871042424616187135192600490, 20.230920313200695101862838721473, 21.67129843919772399949664780087, 22.480924442030811299387756683929, 23.14023501086004672187690111655, 23.88073235597852639207383397204