L(s) = 1 | + (−0.393 + 0.919i)2-s + (0.936 − 0.351i)3-s + (−0.691 − 0.722i)4-s + (−0.963 − 0.266i)5-s + (−0.0448 + 0.998i)6-s + (0.936 − 0.351i)8-s + (0.753 − 0.657i)9-s + (0.623 − 0.781i)10-s + (−0.900 − 0.433i)12-s + (−0.393 + 0.919i)13-s + (−0.995 + 0.0896i)15-s + (−0.0448 + 0.998i)16-s + (0.983 − 0.178i)17-s + (0.309 + 0.951i)18-s + (0.309 − 0.951i)19-s + (0.473 + 0.880i)20-s + ⋯ |
L(s) = 1 | + (−0.393 + 0.919i)2-s + (0.936 − 0.351i)3-s + (−0.691 − 0.722i)4-s + (−0.963 − 0.266i)5-s + (−0.0448 + 0.998i)6-s + (0.936 − 0.351i)8-s + (0.753 − 0.657i)9-s + (0.623 − 0.781i)10-s + (−0.900 − 0.433i)12-s + (−0.393 + 0.919i)13-s + (−0.995 + 0.0896i)15-s + (−0.0448 + 0.998i)16-s + (0.983 − 0.178i)17-s + (0.309 + 0.951i)18-s + (0.309 − 0.951i)19-s + (0.473 + 0.880i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.143071278 - 0.1767754689i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.143071278 - 0.1767754689i\) |
\(L(1)\) |
\(\approx\) |
\(0.9707734109 + 0.09682255295i\) |
\(L(1)\) |
\(\approx\) |
\(0.9707734109 + 0.09682255295i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.393 + 0.919i)T \) |
| 3 | \( 1 + (0.936 - 0.351i)T \) |
| 5 | \( 1 + (-0.963 - 0.266i)T \) |
| 13 | \( 1 + (-0.393 + 0.919i)T \) |
| 17 | \( 1 + (0.983 - 0.178i)T \) |
| 19 | \( 1 + (0.309 - 0.951i)T \) |
| 23 | \( 1 + (-0.900 + 0.433i)T \) |
| 29 | \( 1 + (0.134 - 0.990i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.134 - 0.990i)T \) |
| 41 | \( 1 + (0.936 - 0.351i)T \) |
| 43 | \( 1 + (0.623 - 0.781i)T \) |
| 47 | \( 1 + (-0.995 - 0.0896i)T \) |
| 53 | \( 1 + (0.983 + 0.178i)T \) |
| 59 | \( 1 + (0.936 + 0.351i)T \) |
| 61 | \( 1 + (0.983 - 0.178i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.473 - 0.880i)T \) |
| 73 | \( 1 + (-0.995 + 0.0896i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.393 - 0.919i)T \) |
| 89 | \( 1 + (-0.222 + 0.974i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.20404300746512541764412795317, −22.434485021144873461770020728223, −21.642221541116671353205521270538, −20.66851677937520429894060852643, −20.07960297960518063820155827501, −19.46783860106323955087465103019, −18.665610542084117479741690011188, −17.976210922802743787143199082873, −16.5393172922443117860933661229, −15.97894679621559412205070650280, −14.6527404674210118363889460876, −14.30268258370782127200763223284, −12.88019406513527630396363417546, −12.364586142303809880802211550346, −11.2708460194961643798336200161, −10.28029433025713162294753590200, −9.80193666188813735872959465440, −8.46396147430503981700963324693, −8.02886045218029541404961379394, −7.20935919901108617903438523107, −5.26124540617279538602586135949, −4.10749125827560213041040374673, −3.39877461059447166437029716577, −2.648879763339487736851774554227, −1.255974636584169936796668369676,
0.724340882299287042935233856968, 2.15001428892689382815826117398, 3.705212324368019084548092904560, 4.432516074968896819769913375605, 5.71267779277345996025424181421, 7.080614290757310468674212994016, 7.486587492709423936816843660703, 8.35859769859952926016981750815, 9.19906655721923849951313022181, 9.88902042368839936905943429727, 11.35992020692252042803968706343, 12.36062200075970553666195703063, 13.37885567151527462294457019539, 14.24592991646612603687261456237, 14.888817092812907168939737129739, 15.8018592954963560188243598570, 16.36346515858247864779075256046, 17.497118012643402869822203811176, 18.451973264759289356912122347635, 19.25138329886284502892029487180, 19.64198453714481378655817823632, 20.640821269567936786706602182543, 21.75014793555849908445649838827, 22.918079117364901045869467861226, 23.76735631635510955476668979914