L(s) = 1 | + (0.887 + 0.460i)2-s + (0.791 − 0.611i)3-s + (0.575 + 0.817i)4-s + (0.525 + 0.850i)5-s + (0.983 − 0.178i)6-s + (0.134 + 0.990i)8-s + (0.251 − 0.967i)9-s + (0.0747 + 0.997i)10-s + (0.955 + 0.294i)12-s + (−0.0448 − 0.998i)13-s + (0.936 + 0.351i)15-s + (−0.337 + 0.941i)16-s + (0.193 − 0.981i)17-s + (0.669 − 0.743i)18-s + (0.669 + 0.743i)19-s + (−0.393 + 0.919i)20-s + ⋯ |
L(s) = 1 | + (0.887 + 0.460i)2-s + (0.791 − 0.611i)3-s + (0.575 + 0.817i)4-s + (0.525 + 0.850i)5-s + (0.983 − 0.178i)6-s + (0.134 + 0.990i)8-s + (0.251 − 0.967i)9-s + (0.0747 + 0.997i)10-s + (0.955 + 0.294i)12-s + (−0.0448 − 0.998i)13-s + (0.936 + 0.351i)15-s + (−0.337 + 0.941i)16-s + (0.193 − 0.981i)17-s + (0.669 − 0.743i)18-s + (0.669 + 0.743i)19-s + (−0.393 + 0.919i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.591i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.169090552 + 1.038736462i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.169090552 + 1.038736462i\) |
\(L(1)\) |
\(\approx\) |
\(2.297028117 + 0.5202346361i\) |
\(L(1)\) |
\(\approx\) |
\(2.297028117 + 0.5202346361i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.887 + 0.460i)T \) |
| 3 | \( 1 + (0.791 - 0.611i)T \) |
| 5 | \( 1 + (0.525 + 0.850i)T \) |
| 13 | \( 1 + (-0.0448 - 0.998i)T \) |
| 17 | \( 1 + (0.193 - 0.981i)T \) |
| 19 | \( 1 + (0.669 + 0.743i)T \) |
| 23 | \( 1 + (-0.733 - 0.680i)T \) |
| 29 | \( 1 + (0.858 - 0.512i)T \) |
| 31 | \( 1 + (-0.104 + 0.994i)T \) |
| 37 | \( 1 + (0.0149 + 0.999i)T \) |
| 41 | \( 1 + (0.134 + 0.990i)T \) |
| 43 | \( 1 + (-0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.163 + 0.986i)T \) |
| 53 | \( 1 + (-0.946 - 0.323i)T \) |
| 59 | \( 1 + (-0.925 + 0.379i)T \) |
| 61 | \( 1 + (-0.946 + 0.323i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.393 - 0.919i)T \) |
| 73 | \( 1 + (-0.163 - 0.986i)T \) |
| 79 | \( 1 + (0.913 - 0.406i)T \) |
| 83 | \( 1 + (-0.0448 + 0.998i)T \) |
| 89 | \( 1 + (0.365 + 0.930i)T \) |
| 97 | \( 1 + (-0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.42528637481051628437383475018, −22.02019792979680448161874944436, −21.63594582850468887960536567997, −21.0009901915630494608938450002, −20.06436399684808821074340194815, −19.65893539901247028892335921932, −18.61941304591861173120624559662, −17.23774321060887201628692873424, −16.23185010762010140301383566206, −15.65154868951736737702324921284, −14.58519174470874624281664965753, −13.88253112558559262624265339990, −13.26342340055461925368229111463, −12.32484635251843701621449352060, −11.33604044559893344005043118781, −10.24558218935997082151916134951, −9.52137715917602603358247001977, −8.75098069116276403956983347568, −7.492773860140334292208681941588, −6.16997452602808631976064835556, −5.180145937701018153991656628093, −4.378129897734977360409051133292, −3.55792281939796917944167371636, −2.299131984771841093920844245051, −1.503956226415219028579445421522,
1.661519011070861355906735144327, 2.95037960427292157067556515853, 3.185840866302802614624605866529, 4.7201447309321600026174104174, 5.94981241871712855560100444826, 6.61881682260035870920039657420, 7.60008279457573139691121351856, 8.1898815729093455786362357607, 9.56440446638285711260385458772, 10.53874903398660928830109030731, 11.83395956516567277802813160198, 12.51649890119491371262506184417, 13.652306242794299873490767305905, 13.961695014153940586858959306030, 14.82907026294294230817951746597, 15.525963234234655136403964867949, 16.58981668879325241938834393643, 17.93841660063064895026619284547, 18.15099738420720085061431081001, 19.43903657613217356737508501324, 20.39271456111084461707160689633, 20.96179382803823321050285052729, 22.0254044989408847384925525660, 22.73525342935031220443713907066, 23.44116264484137486038449928778