L(s) = 1 | + (−0.936 + 0.351i)2-s + (−0.473 + 0.880i)3-s + (0.753 − 0.657i)4-s + (0.691 + 0.722i)5-s + (0.134 − 0.990i)6-s + (−0.473 + 0.880i)8-s + (−0.550 − 0.834i)9-s + (−0.900 − 0.433i)10-s + (0.222 + 0.974i)12-s + (0.936 − 0.351i)13-s + (−0.963 + 0.266i)15-s + (0.134 − 0.990i)16-s + (0.858 − 0.512i)17-s + (0.809 + 0.587i)18-s + (−0.809 + 0.587i)19-s + (0.995 + 0.0896i)20-s + ⋯ |
L(s) = 1 | + (−0.936 + 0.351i)2-s + (−0.473 + 0.880i)3-s + (0.753 − 0.657i)4-s + (0.691 + 0.722i)5-s + (0.134 − 0.990i)6-s + (−0.473 + 0.880i)8-s + (−0.550 − 0.834i)9-s + (−0.900 − 0.433i)10-s + (0.222 + 0.974i)12-s + (0.936 − 0.351i)13-s + (−0.963 + 0.266i)15-s + (0.134 − 0.990i)16-s + (0.858 − 0.512i)17-s + (0.809 + 0.587i)18-s + (−0.809 + 0.587i)19-s + (0.995 + 0.0896i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.432 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 539 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.432 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4499224913 + 0.7152597647i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4499224913 + 0.7152597647i\) |
\(L(1)\) |
\(\approx\) |
\(0.6111846935 + 0.3878343980i\) |
\(L(1)\) |
\(\approx\) |
\(0.6111846935 + 0.3878343980i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.936 + 0.351i)T \) |
| 3 | \( 1 + (-0.473 + 0.880i)T \) |
| 5 | \( 1 + (0.691 + 0.722i)T \) |
| 13 | \( 1 + (0.936 - 0.351i)T \) |
| 17 | \( 1 + (0.858 - 0.512i)T \) |
| 19 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (-0.222 + 0.974i)T \) |
| 29 | \( 1 + (0.393 - 0.919i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.393 + 0.919i)T \) |
| 41 | \( 1 + (0.473 - 0.880i)T \) |
| 43 | \( 1 + (0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.963 + 0.266i)T \) |
| 53 | \( 1 + (0.858 + 0.512i)T \) |
| 59 | \( 1 + (-0.473 - 0.880i)T \) |
| 61 | \( 1 + (0.858 - 0.512i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.995 + 0.0896i)T \) |
| 73 | \( 1 + (-0.963 + 0.266i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (0.936 + 0.351i)T \) |
| 89 | \( 1 + (-0.623 + 0.781i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.41030179399723531199272321308, −22.12893053406574820807580310624, −21.30155623822911967537348297862, −20.553292019261557585868123506319, −19.63485532007932603699368100873, −18.82347264498688459095945149269, −18.10634359374806172655340280327, −17.38463202613022971467862097968, −16.64143158336495014305938047708, −16.0868676164220995209377499588, −14.53851877070742392844433933873, −13.36123905921847256731217033882, −12.712146391597784207845935517295, −12.00317741599032648300661320523, −10.93949655228810767382978243626, −10.26131685503582237092148201837, −8.94461694416639004125271564468, −8.47425917637811847875334965933, −7.37768292346692580095428131887, −6.35908103737167906383430418810, −5.68399637442607191305780488763, −4.1720630419845655916884178721, −2.56855018428678034657948942788, −1.67582006646707696483477436021, −0.74818679113603275264929010705,
1.21863745960532518122123775491, 2.65353930835441742368190925512, 3.74964217050990401124433263318, 5.38654577559586692169340480870, 5.937852755297738657053998038008, 6.81985145580856768200743561804, 8.01532677263328382355735733047, 9.07300031048373718413055839519, 9.87803684796714713120255681265, 10.521830580819799457884725246739, 11.18042739260940513059613096054, 12.196357541569957810431997735444, 13.81469490533316282168671056054, 14.56118059267269007703761331874, 15.48404449659608211673376628485, 16.079586597839837257872406187964, 17.1295461612021770919606308568, 17.61476394269803710693383778870, 18.4902662884964634586204236166, 19.24223228457599718328868818012, 20.56395040808915104531553388361, 21.03460034634179786674974788008, 21.9227714300275033808031949026, 23.08520332383595700498569398162, 23.41673791164330013643351365692