L(s) = 1 | + (0.0718 + 0.997i)2-s + (0.991 − 0.131i)3-s + (−0.989 + 0.143i)4-s + (0.202 + 0.979i)6-s + (−0.603 − 0.797i)7-s + (−0.214 − 0.976i)8-s + (0.965 − 0.260i)9-s + (−0.155 − 0.987i)11-s + (−0.962 + 0.272i)12-s + (−0.374 + 0.927i)13-s + (0.752 − 0.658i)14-s + (0.958 − 0.283i)16-s + (−0.775 − 0.631i)17-s + (0.329 + 0.944i)18-s + (−0.363 + 0.931i)19-s + ⋯ |
L(s) = 1 | + (0.0718 + 0.997i)2-s + (0.991 − 0.131i)3-s + (−0.989 + 0.143i)4-s + (0.202 + 0.979i)6-s + (−0.603 − 0.797i)7-s + (−0.214 − 0.976i)8-s + (0.965 − 0.260i)9-s + (−0.155 − 0.987i)11-s + (−0.962 + 0.272i)12-s + (−0.374 + 0.927i)13-s + (0.752 − 0.658i)14-s + (0.958 − 0.283i)16-s + (−0.775 − 0.631i)17-s + (0.329 + 0.944i)18-s + (−0.363 + 0.931i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5245 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.957 - 0.287i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5245 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.957 - 0.287i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03070136496 - 0.2091619899i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03070136496 - 0.2091619899i\) |
\(L(1)\) |
\(\approx\) |
\(1.068827953 + 0.2445431076i\) |
\(L(1)\) |
\(\approx\) |
\(1.068827953 + 0.2445431076i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 1049 | \( 1 \) |
good | 2 | \( 1 + (0.0718 + 0.997i)T \) |
| 3 | \( 1 + (0.991 - 0.131i)T \) |
| 7 | \( 1 + (-0.603 - 0.797i)T \) |
| 11 | \( 1 + (-0.155 - 0.987i)T \) |
| 13 | \( 1 + (-0.374 + 0.927i)T \) |
| 17 | \( 1 + (-0.775 - 0.631i)T \) |
| 19 | \( 1 + (-0.363 + 0.931i)T \) |
| 23 | \( 1 + (-0.0957 - 0.995i)T \) |
| 29 | \( 1 + (-0.998 - 0.0479i)T \) |
| 31 | \( 1 + (0.825 + 0.564i)T \) |
| 37 | \( 1 + (0.922 - 0.385i)T \) |
| 41 | \( 1 + (-0.363 + 0.931i)T \) |
| 43 | \( 1 + (0.857 - 0.513i)T \) |
| 47 | \( 1 + (-0.260 - 0.965i)T \) |
| 53 | \( 1 + (-0.940 - 0.340i)T \) |
| 59 | \( 1 + (-0.752 - 0.658i)T \) |
| 61 | \( 1 + (0.574 - 0.818i)T \) |
| 67 | \( 1 + (-0.190 + 0.981i)T \) |
| 71 | \( 1 + (0.202 - 0.979i)T \) |
| 73 | \( 1 + (0.948 + 0.318i)T \) |
| 79 | \( 1 + (-0.574 - 0.818i)T \) |
| 83 | \( 1 + (0.583 - 0.811i)T \) |
| 89 | \( 1 + (-0.797 - 0.603i)T \) |
| 97 | \( 1 + (0.983 - 0.178i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.24757147762104878144028359836, −17.67145155818783665707441449830, −17.02488372457042671868520453894, −15.695990937408237486030436802559, −15.25732515584835266763910503108, −14.93624167018865599407745832932, −13.95634219857970315640440691194, −13.16731414918640224187545440749, −12.85941942338503662231641608939, −12.33146700415516775653205998954, −11.36714833418264877992988696599, −10.648392925742355104475512836802, −9.85725013311524686483304729113, −9.443669485040668156914345265949, −8.911921191207590160600443437076, −8.06502588112124315937468945247, −7.4954952531590871478835848659, −6.42369455375014219795894443161, −5.50942143540776093463578851282, −4.700076222736298029965660913849, −4.080082099179643414639766171121, −3.24348318942855038060493167902, −2.519019448086829746824140931662, −2.19554641443771411240140516135, −1.19753008543257363277651535374,
0.02928585740106334572866319935, 0.77999504868026461030023787873, 1.92819941551095166771451847338, 2.950358534637917197153225794993, 3.65769646046610917486435879552, 4.28033351445032549147306194455, 4.92402115170486669888929552726, 6.224884056897643162656819460319, 6.51852724954469526012766706226, 7.31402996587747676709022769989, 7.90657530044510007262238517317, 8.6151374014552229827399573392, 9.19523913409973351837212308875, 9.83621623622381738417831442802, 10.49898009660477574979291205427, 11.52390318580556998444314754649, 12.60707030389857009346605282365, 13.05370177187320808867418080655, 13.76605258587347283504205436266, 14.18618197553921862113074870999, 14.67570903094217246311709382382, 15.59471177189151889508268472626, 16.19703998357987686216505828356, 16.60738226731071673728685836460, 17.29224791571913483484453113708