L(s) = 1 | − i·2-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s + i·8-s + (−0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s − 13-s + (−0.707 + 0.707i)14-s + 16-s + i·19-s + (−0.707 + 0.707i)20-s + (−0.707 + 0.707i)22-s + (−0.707 − 0.707i)23-s − i·25-s + i·26-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (0.707 − 0.707i)5-s + (−0.707 − 0.707i)7-s + i·8-s + (−0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s − 13-s + (−0.707 + 0.707i)14-s + 16-s + i·19-s + (−0.707 + 0.707i)20-s + (−0.707 + 0.707i)22-s + (−0.707 − 0.707i)23-s − i·25-s + i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 + 0.0465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.998 + 0.0465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02302884431 - 0.9896645645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02302884431 - 0.9896645645i\) |
\(L(1)\) |
\(\approx\) |
\(0.5925173425 - 0.6503920497i\) |
\(L(1)\) |
\(\approx\) |
\(0.5925173425 - 0.6503920497i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - iT \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 11 | \( 1 + (-0.707 - 0.707i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
| 29 | \( 1 + (0.707 - 0.707i)T \) |
| 31 | \( 1 + (0.707 - 0.707i)T \) |
| 37 | \( 1 + (0.707 - 0.707i)T \) |
| 41 | \( 1 + (0.707 + 0.707i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + iT \) |
| 61 | \( 1 + (-0.707 - 0.707i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (-0.707 + 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 + (0.707 + 0.707i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.707 + 0.707i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−34.04784741945525695523022861511, −32.86168047098269501867761165076, −31.840979828676910483160680825330, −30.74243710223362401262122147467, −29.22446376383010879353145064174, −28.08316826921019740723404911838, −26.573622992611084673984196974708, −25.75980348021679468933203244156, −24.93703123018965468704997961812, −23.52122292268362702848812300888, −22.30503639446707412884214562685, −21.61867791759719052645361949915, −19.470618145575773585715868045815, −18.22172907780401786757006331170, −17.41696439933236752639251963942, −15.84174818756594733128327397170, −14.930178140953442875724069704302, −13.656268305989007198037692775139, −12.44169838768633531622564169527, −10.182067343168754057968974021620, −9.238386568029485534904120908684, −7.4440483181739074149100217333, −6.29697733053697461875341065917, −4.99879525547512101527739317690, −2.74573570283124026880265507201,
0.560656348539303105788978617580, 2.50670389499911364794201130682, 4.27693333747464259725788792485, 5.81564977993107877714449946964, 8.10893364214305493709549982982, 9.64011025553872299527667341078, 10.423663252825610686600457377145, 12.196786681686833992006974727038, 13.20249564347370590840733592065, 14.163670537860925838273132636079, 16.37239219776283592502667052129, 17.3940341629849484403098168, 18.79725703263568690964219712102, 19.96875749646952332430813109562, 20.9414784630429538242686965597, 21.99665976458978875229489899537, 23.22650241483615758346768671814, 24.53695222733646442118264787044, 26.1417885786690683367843881237, 27.08403482655871180266936656829, 28.59996338299064701999068621019, 29.20991019852028493389281768236, 30.10760518126745989784517051990, 31.837621881382426494162297101794, 32.23079530163812667142659223924