L(s) = 1 | + (−0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.809 + 0.587i)6-s + 7-s + (0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.309 − 0.951i)12-s + (−0.309 − 0.951i)13-s + (−0.309 + 0.951i)14-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)17-s − 18-s + (0.809 + 0.587i)21-s + (0.809 + 0.587i)22-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.809 + 0.587i)6-s + 7-s + (0.809 − 0.587i)8-s + (0.309 + 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.309 − 0.951i)12-s + (−0.309 − 0.951i)13-s + (−0.309 + 0.951i)14-s + (0.309 + 0.951i)16-s + (−0.809 + 0.587i)17-s − 18-s + (0.809 + 0.587i)21-s + (0.809 + 0.587i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.728 + 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.255946592 + 0.8931924422i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.255946592 + 0.8931924422i\) |
\(L(1)\) |
\(\approx\) |
\(1.181872211 + 0.5561468477i\) |
\(L(1)\) |
\(\approx\) |
\(1.181872211 + 0.5561468477i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 + (0.809 + 0.587i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
| 13 | \( 1 + (-0.309 - 0.951i)T \) |
| 17 | \( 1 + (-0.809 + 0.587i)T \) |
| 23 | \( 1 + (0.309 - 0.951i)T \) |
| 29 | \( 1 + (0.809 + 0.587i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (-0.309 - 0.951i)T \) |
| 41 | \( 1 + (-0.309 - 0.951i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (0.809 + 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.507427275370371666863597688176, −22.57908393376636400844256059180, −21.32972600552933002578299309070, −20.96512672120621361876529431489, −19.936520605276152073623720052643, −19.48225515966410232448120236052, −18.4515858078812717067635982108, −17.75527108115511894747482820140, −17.15653553869320127511473443971, −15.563267267218874039512539534524, −14.512279703216446491927127404832, −13.86598224354901349619052105114, −13.04013976865717165506839286382, −11.8698057914314517525604757843, −11.58279327523873590925686036061, −10.12567510341668104993170738696, −9.29609691606150841840458411375, −8.52962250123063921669261812930, −7.60466848020353811269323936481, −6.7658465134334638985597385936, −4.82961249938298601436817680101, −4.16460691503901832932441271768, −2.7836126015990060979147974271, −1.93342810841458579763198261238, −1.12106712886184222861401400652,
0.73338035817111409907603985933, 2.2380073638056415134616706483, 3.69572006379579188004675137762, 4.674926882549456824462475663160, 5.500018960898814269448369293841, 6.74619063509837604280869257116, 7.97994243670475504541100627546, 8.409799989186739761093083810347, 9.20040982389220244734776413649, 10.43037478177512736601300897020, 10.95982336922846269108071639021, 12.664180805507212641597804528851, 13.774041993822392659273902689268, 14.32538275502634987943023989300, 15.15679698479836152315420096401, 15.76697181023417185346222014646, 16.81574148689091066378694464078, 17.54305226562171837188646276339, 18.52659547518765066587814491729, 19.42651551613466713257435321918, 20.18617857972786530258946696897, 21.25950109650974484738826922869, 22.01867615342799171747685631536, 22.87779441234076145402974960821, 24.221287338044133077798448481419