L(s) = 1 | + (−0.559 − 0.829i)2-s + (0.882 − 0.469i)3-s + (−0.374 + 0.927i)4-s + (−0.882 − 0.469i)6-s + (−0.5 + 0.866i)7-s + (0.978 − 0.207i)8-s + (0.559 − 0.829i)9-s + (−0.104 + 0.994i)11-s + (0.104 + 0.994i)12-s + (−0.438 − 0.898i)13-s + (0.997 − 0.0697i)14-s + (−0.719 − 0.694i)16-s + (−0.615 + 0.788i)17-s − 18-s + (−0.0348 + 0.999i)21-s + (0.882 − 0.469i)22-s + ⋯ |
L(s) = 1 | + (−0.559 − 0.829i)2-s + (0.882 − 0.469i)3-s + (−0.374 + 0.927i)4-s + (−0.882 − 0.469i)6-s + (−0.5 + 0.866i)7-s + (0.978 − 0.207i)8-s + (0.559 − 0.829i)9-s + (−0.104 + 0.994i)11-s + (0.104 + 0.994i)12-s + (−0.438 − 0.898i)13-s + (0.997 − 0.0697i)14-s + (−0.719 − 0.694i)16-s + (−0.615 + 0.788i)17-s − 18-s + (−0.0348 + 0.999i)21-s + (0.882 − 0.469i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.856 - 0.516i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3138742987 - 1.129015786i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3138742987 - 1.129015786i\) |
\(L(1)\) |
\(\approx\) |
\(0.7978181984 - 0.4343382832i\) |
\(L(1)\) |
\(\approx\) |
\(0.7978181984 - 0.4343382832i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.559 - 0.829i)T \) |
| 3 | \( 1 + (0.882 - 0.469i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.104 + 0.994i)T \) |
| 13 | \( 1 + (-0.438 - 0.898i)T \) |
| 17 | \( 1 + (-0.615 + 0.788i)T \) |
| 23 | \( 1 + (-0.241 - 0.970i)T \) |
| 29 | \( 1 + (0.615 + 0.788i)T \) |
| 31 | \( 1 + (-0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.719 + 0.694i)T \) |
| 43 | \( 1 + (0.766 - 0.642i)T \) |
| 47 | \( 1 + (-0.615 - 0.788i)T \) |
| 53 | \( 1 + (0.374 - 0.927i)T \) |
| 59 | \( 1 + (-0.961 + 0.275i)T \) |
| 61 | \( 1 + (-0.241 - 0.970i)T \) |
| 67 | \( 1 + (-0.0348 - 0.999i)T \) |
| 71 | \( 1 + (-0.848 - 0.529i)T \) |
| 73 | \( 1 + (0.438 - 0.898i)T \) |
| 79 | \( 1 + (0.882 - 0.469i)T \) |
| 83 | \( 1 + (0.669 + 0.743i)T \) |
| 89 | \( 1 + (0.719 - 0.694i)T \) |
| 97 | \( 1 + (-0.0348 + 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.17483631522653413677468273454, −23.35645810798882642993832274724, −22.288555886474261104935572867888, −21.421871390681710277481917641715, −20.30607794904402903390302921245, −19.48419309281057292687840398377, −19.08088916942965353825578235160, −17.91332142382890770733505644459, −16.82929883007418968383250539556, −16.15810755637291326223098901536, −15.60212722703108415571296033365, −14.34872206777544870595906416595, −13.88525375570346553258639233965, −13.169626063206356162237066725974, −11.34635202103173375892981544827, −10.443961915364673878371364308740, −9.51165859286909346267879279314, −8.98933198633460755187418864811, −7.84431151600161226357247674305, −7.17398188531886593954944962498, −6.115937535595731164754118532881, −4.77998049814028113486603856719, −3.93893586800423820217992747796, −2.62728280670854928995427347943, −1.12105965920050280433568305130,
0.34955127390351064549701816820, 1.91811974830436373480006719782, 2.52122327794964450071986019772, 3.52488904992931693890617298830, 4.69530252133820078316343519888, 6.32429424386040827202334494220, 7.44706122995843915776987539236, 8.25864503922776693054279539494, 9.11760381845300643168944462090, 9.82482600063707173372116616411, 10.772162791637825161865375940362, 12.24797474941948064731796766738, 12.5838613852364964268152915828, 13.300974794342238661398527732326, 14.658559464226672555963288438678, 15.32485379735523868982622492436, 16.48113494035318108211509906572, 17.84444690767422184248676743862, 18.11958378690156967566996526167, 19.15823881296573114478255264921, 19.86707954816924032535305180887, 20.370504489205421416876204912827, 21.41442894052167797606791716947, 22.191004592229166941560833375816, 23.05503497689882827667853688866