L(s) = 1 | + (−0.830 − 0.556i)2-s + (−0.996 + 0.0796i)3-s + (0.380 + 0.924i)4-s + (0.995 − 0.0955i)5-s + (0.872 + 0.488i)6-s + (0.0398 − 0.999i)7-s + (0.198 − 0.980i)8-s + (0.987 − 0.158i)9-s + (−0.880 − 0.474i)10-s + (0.536 + 0.843i)11-s + (−0.453 − 0.891i)12-s + (0.135 − 0.990i)13-s + (−0.589 + 0.808i)14-s + (−0.984 + 0.174i)15-s + (−0.709 + 0.704i)16-s + (0.894 − 0.446i)17-s + ⋯ |
L(s) = 1 | + (−0.830 − 0.556i)2-s + (−0.996 + 0.0796i)3-s + (0.380 + 0.924i)4-s + (0.995 − 0.0955i)5-s + (0.872 + 0.488i)6-s + (0.0398 − 0.999i)7-s + (0.198 − 0.980i)8-s + (0.987 − 0.158i)9-s + (−0.880 − 0.474i)10-s + (0.536 + 0.843i)11-s + (−0.453 − 0.891i)12-s + (0.135 − 0.990i)13-s + (−0.589 + 0.808i)14-s + (−0.984 + 0.174i)15-s + (−0.709 + 0.704i)16-s + (0.894 − 0.446i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.726 - 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3743526332 - 0.9397649593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3743526332 - 0.9397649593i\) |
\(L(1)\) |
\(\approx\) |
\(0.6367888115 - 0.3231474479i\) |
\(L(1)\) |
\(\approx\) |
\(0.6367888115 - 0.3231474479i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.830 - 0.556i)T \) |
| 3 | \( 1 + (-0.996 + 0.0796i)T \) |
| 5 | \( 1 + (0.995 - 0.0955i)T \) |
| 7 | \( 1 + (0.0398 - 0.999i)T \) |
| 11 | \( 1 + (0.536 + 0.843i)T \) |
| 13 | \( 1 + (0.135 - 0.990i)T \) |
| 17 | \( 1 + (0.894 - 0.446i)T \) |
| 19 | \( 1 + (-0.336 - 0.941i)T \) |
| 23 | \( 1 + (0.999 - 0.0159i)T \) |
| 29 | \( 1 + (0.830 - 0.556i)T \) |
| 31 | \( 1 + (-0.949 + 0.313i)T \) |
| 37 | \( 1 + (-0.812 - 0.582i)T \) |
| 41 | \( 1 + (-0.675 + 0.737i)T \) |
| 43 | \( 1 + (-0.0717 + 0.997i)T \) |
| 47 | \( 1 + (-0.00797 - 0.999i)T \) |
| 53 | \( 1 + (0.395 - 0.918i)T \) |
| 59 | \( 1 + (-0.753 - 0.657i)T \) |
| 61 | \( 1 + (0.944 + 0.328i)T \) |
| 67 | \( 1 + (0.887 - 0.460i)T \) |
| 71 | \( 1 + (0.991 + 0.127i)T \) |
| 73 | \( 1 + (-0.732 - 0.681i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.848 + 0.529i)T \) |
| 89 | \( 1 + (0.639 - 0.768i)T \) |
| 97 | \( 1 + (0.0398 - 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.55818094222021531639509238268, −17.572592861546363924391019165171, −17.039214052757050490579907495721, −16.65671408663160260484637312749, −16.02104017775691968000653783223, −15.23160437087346290000576170501, −14.39150616816307034492506514853, −14.01037242339613507581201873421, −12.94629653221501433204841631012, −12.152093915908120606603127588015, −11.585643883136483147039391899597, −10.766224446642931308001172902387, −10.29981768025471060090473326961, −9.46727250848122706477805580496, −8.91763397249028153357418264080, −8.31451505887276502934303222823, −7.15785189677913519881647671490, −6.58218172509127033045893016538, −5.97175209246481107816218523207, −5.53787441599080563536500302995, −4.92153855367751777792190221249, −3.65853351361503484684697972226, −2.45456508190946850516005200420, −1.55795983120786192429660642665, −1.18010618597298641254745517667,
0.47287190010130392275041885276, 1.165174881704426849951093315905, 1.8255535037517948687191783807, 2.91799690948729368900388811746, 3.73455370194157432167991926574, 4.727002170339138348113747153743, 5.23451894557884012225503168416, 6.35860510808177036045845267002, 6.939661344030263082715736370391, 7.40437127642038873091774708111, 8.438844541223006985208565511464, 9.342633294211687499717424406440, 10.006976236074696718602214127995, 10.25090570841155374604055026457, 11.039074285295292162539056097222, 11.5802244827010236641758700368, 12.61113205645184917483844405033, 12.86727201158520371866144045533, 13.597243242590990421061007020755, 14.584397075562706508913136650101, 15.45903578780832347491675125049, 16.26868704250822402037721896768, 16.98855087903774994535877075713, 17.20319312140972873761550559487, 17.89556896510534492595576923472