L(s) = 1 | + (−0.536 − 0.843i)2-s + (0.260 + 0.965i)3-s + (−0.424 + 0.905i)4-s + (−0.589 − 0.808i)5-s + (0.675 − 0.737i)6-s + (−0.793 + 0.608i)7-s + (0.991 − 0.127i)8-s + (−0.864 + 0.502i)9-s + (−0.366 + 0.930i)10-s + (−0.439 − 0.898i)11-s + (−0.984 − 0.174i)12-s + (−0.0239 − 0.999i)13-s + (0.939 + 0.343i)14-s + (0.627 − 0.778i)15-s + (−0.639 − 0.768i)16-s + (−0.351 + 0.936i)17-s + ⋯ |
L(s) = 1 | + (−0.536 − 0.843i)2-s + (0.260 + 0.965i)3-s + (−0.424 + 0.905i)4-s + (−0.589 − 0.808i)5-s + (0.675 − 0.737i)6-s + (−0.793 + 0.608i)7-s + (0.991 − 0.127i)8-s + (−0.864 + 0.502i)9-s + (−0.366 + 0.930i)10-s + (−0.439 − 0.898i)11-s + (−0.984 − 0.174i)12-s + (−0.0239 − 0.999i)13-s + (0.939 + 0.343i)14-s + (0.627 − 0.778i)15-s + (−0.639 − 0.768i)16-s + (−0.351 + 0.936i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2973808815 - 0.4472729745i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2973808815 - 0.4472729745i\) |
\(L(1)\) |
\(\approx\) |
\(0.6108537453 - 0.1196681504i\) |
\(L(1)\) |
\(\approx\) |
\(0.6108537453 - 0.1196681504i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.536 - 0.843i)T \) |
| 3 | \( 1 + (0.260 + 0.965i)T \) |
| 5 | \( 1 + (-0.589 - 0.808i)T \) |
| 7 | \( 1 + (-0.793 + 0.608i)T \) |
| 11 | \( 1 + (-0.439 - 0.898i)T \) |
| 13 | \( 1 + (-0.0239 - 0.999i)T \) |
| 17 | \( 1 + (-0.351 + 0.936i)T \) |
| 19 | \( 1 + (0.999 - 0.0318i)T \) |
| 23 | \( 1 + (0.933 - 0.358i)T \) |
| 29 | \( 1 + (0.536 - 0.843i)T \) |
| 31 | \( 1 + (-0.495 + 0.868i)T \) |
| 37 | \( 1 + (0.166 - 0.986i)T \) |
| 41 | \( 1 + (-0.975 + 0.221i)T \) |
| 43 | \( 1 + (0.996 + 0.0796i)T \) |
| 47 | \( 1 + (0.182 + 0.983i)T \) |
| 53 | \( 1 + (-0.0717 - 0.997i)T \) |
| 59 | \( 1 + (0.698 + 0.715i)T \) |
| 61 | \( 1 + (0.150 + 0.988i)T \) |
| 67 | \( 1 + (0.00797 + 0.999i)T \) |
| 71 | \( 1 + (-0.978 + 0.205i)T \) |
| 73 | \( 1 + (0.0398 + 0.999i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.963 + 0.267i)T \) |
| 89 | \( 1 + (0.244 - 0.969i)T \) |
| 97 | \( 1 + (-0.793 + 0.608i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.545188176147826577261403807910, −17.78597455960700839391506354746, −17.09522034430126310341238176331, −16.381264734213931688870337873387, −15.68066649735677223064506667523, −15.10027392673904293084138902921, −14.33418108586081985028039489816, −13.770981057006565236412224088912, −13.29557899786438925395366970155, −12.34192831962117446283584894618, −11.56830255518583598681241496022, −10.90361450521749646760457449826, −9.99518414943814900653642114303, −9.408118026244337297863312872431, −8.74105712204327024857111623058, −7.641287985523087512333535689356, −7.36704918230949224983196836733, −6.83554547497247658035588913851, −6.406981220147927118693629720591, −5.31083544536622820260605145889, −4.47817664112451113281822921435, −3.48109529257255252472312643607, −2.70567334033022834867082474530, −1.77616390984281103218258550019, −0.76671840588360170252481823906,
0.24848464098475546128053441585, 1.18764577368022651014687700950, 2.58050291198525603470213127723, 3.03660454112171779894021880603, 3.693413160473559985898580274709, 4.40161162254700890707050926678, 5.33814272899272185834522936837, 5.78629181331350372924026054208, 7.226018152184323500076622809742, 8.07714098668110624625985270414, 8.70611233260153596502959710418, 8.910576622427865396564244523554, 9.88433769435806093268329345171, 10.347491559498521785678450602326, 11.17270038816044036220778015971, 11.65111686705680433176098442580, 12.64897439629406949704555281611, 12.946732319317831826350523782827, 13.70759635934804344969737204777, 14.7337605929633359782752654401, 15.616719436904940872498826022815, 16.003902670187046946753687950613, 16.476154971236493110262012946854, 17.29124918802143786587467067284, 17.91616495453558733050454562920