L(s) = 1 | + (0.839 − 0.543i)2-s + (−0.366 + 0.930i)3-s + (0.410 − 0.912i)4-s + (0.135 − 0.990i)5-s + (0.198 + 0.980i)6-s + (−0.563 + 0.826i)7-s + (−0.150 − 0.988i)8-s + (−0.732 − 0.681i)9-s + (−0.424 − 0.905i)10-s + (−0.803 + 0.595i)11-s + (0.698 + 0.715i)12-s + (−0.894 − 0.446i)13-s + (−0.0239 + 0.999i)14-s + (0.872 + 0.488i)15-s + (−0.663 − 0.748i)16-s + (0.793 − 0.608i)17-s + ⋯ |
L(s) = 1 | + (0.839 − 0.543i)2-s + (−0.366 + 0.930i)3-s + (0.410 − 0.912i)4-s + (0.135 − 0.990i)5-s + (0.198 + 0.980i)6-s + (−0.563 + 0.826i)7-s + (−0.150 − 0.988i)8-s + (−0.732 − 0.681i)9-s + (−0.424 − 0.905i)10-s + (−0.803 + 0.595i)11-s + (0.698 + 0.715i)12-s + (−0.894 − 0.446i)13-s + (−0.0239 + 0.999i)14-s + (0.872 + 0.488i)15-s + (−0.663 − 0.748i)16-s + (0.793 − 0.608i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.104 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.104 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3085166042 + 0.3426644837i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3085166042 + 0.3426644837i\) |
\(L(1)\) |
\(\approx\) |
\(1.045104403 - 0.2361526013i\) |
\(L(1)\) |
\(\approx\) |
\(1.045104403 - 0.2361526013i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.839 - 0.543i)T \) |
| 3 | \( 1 + (-0.366 + 0.930i)T \) |
| 5 | \( 1 + (0.135 - 0.990i)T \) |
| 7 | \( 1 + (-0.563 + 0.826i)T \) |
| 11 | \( 1 + (-0.803 + 0.595i)T \) |
| 13 | \( 1 + (-0.894 - 0.446i)T \) |
| 17 | \( 1 + (0.793 - 0.608i)T \) |
| 19 | \( 1 + (-0.908 + 0.417i)T \) |
| 23 | \( 1 + (0.971 - 0.236i)T \) |
| 29 | \( 1 + (-0.839 - 0.543i)T \) |
| 31 | \( 1 + (-0.0717 - 0.997i)T \) |
| 37 | \( 1 + (0.995 - 0.0955i)T \) |
| 41 | \( 1 + (-0.991 - 0.127i)T \) |
| 43 | \( 1 + (0.880 - 0.474i)T \) |
| 47 | \( 1 + (0.119 + 0.992i)T \) |
| 53 | \( 1 + (0.182 + 0.983i)T \) |
| 59 | \( 1 + (0.229 + 0.973i)T \) |
| 61 | \( 1 + (0.305 - 0.952i)T \) |
| 67 | \( 1 + (0.627 - 0.778i)T \) |
| 71 | \( 1 + (-0.336 + 0.941i)T \) |
| 73 | \( 1 + (-0.244 + 0.969i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.495 + 0.868i)T \) |
| 89 | \( 1 + (0.830 - 0.556i)T \) |
| 97 | \( 1 + (-0.563 + 0.826i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.77316361238333599170621613808, −17.25016127705294155141617393831, −16.62509151131874899198350160095, −16.13954384517416683988382884383, −14.95493150355794150146231894374, −14.64561844232258844867924681203, −13.890783974704854220261331969408, −13.20365960890071271716851665327, −12.9239166430712128706091576479, −12.08043606764807422558126709291, −11.24823912055006940353222880769, −10.777348802808259649688533675416, −10.079103496513130722566100771698, −8.85298335956773813956016863758, −7.9383588835948288023248091767, −7.37894257963316368844084495714, −6.85680896825790672616922366422, −6.36751261761397823523762803469, −5.57076359643802895030554108266, −4.931546366941194825614093126349, −3.82843738210337239085548530132, −3.08957581353224570459626233723, −2.54371198074249658025384056425, −1.59998889545964825906333697706, −0.10259112082996096340675255582,
0.92048379095993799905612807189, 2.32245100779649426148985079245, 2.65701867687599620240000350347, 3.69821628083867734634509965964, 4.45708989586349999217751756921, 5.049958697950459514473499227913, 5.606823543605713644283064441591, 6.03730829988489836791896535291, 7.20475199402876368486204126972, 8.168886022854858920185745498481, 9.225720592402058677037194101546, 9.60922073437852588575569694699, 10.13410168751089719345975815958, 10.93994545745495920294507681286, 11.76104656991018069108051595194, 12.38312736948327324362081764036, 12.7398268978858378557876373959, 13.40263527379066603311433223066, 14.512104939988874369192429655043, 15.06390437363371245069971540430, 15.5107305935498604716134731331, 16.19418336045157026343065639007, 16.85211934049811901525069948702, 17.447152499141063033431655842306, 18.613497242218521336148491027041