L(s) = 1 | + (−0.522 − 0.852i)2-s + (−0.999 − 0.0318i)3-s + (−0.453 + 0.891i)4-s + (0.0663 + 0.997i)5-s + (0.495 + 0.868i)6-s + (−0.486 + 0.873i)7-s + (0.996 − 0.0796i)8-s + (0.997 + 0.0637i)9-s + (0.815 − 0.578i)10-s + (0.996 − 0.0875i)11-s + (0.481 − 0.876i)12-s + (−0.890 + 0.455i)13-s + (0.999 − 0.0425i)14-s + (−0.0345 − 0.999i)15-s + (−0.589 − 0.808i)16-s + (−0.231 − 0.972i)17-s + ⋯ |
L(s) = 1 | + (−0.522 − 0.852i)2-s + (−0.999 − 0.0318i)3-s + (−0.453 + 0.891i)4-s + (0.0663 + 0.997i)5-s + (0.495 + 0.868i)6-s + (−0.486 + 0.873i)7-s + (0.996 − 0.0796i)8-s + (0.997 + 0.0637i)9-s + (0.815 − 0.578i)10-s + (0.996 − 0.0875i)11-s + (0.481 − 0.876i)12-s + (−0.890 + 0.455i)13-s + (0.999 − 0.0425i)14-s + (−0.0345 − 0.999i)15-s + (−0.589 − 0.808i)16-s + (−0.231 − 0.972i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6205789177 + 0.02651864195i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6205789177 + 0.02651864195i\) |
\(L(1)\) |
\(\approx\) |
\(0.5390848846 + 0.03028277471i\) |
\(L(1)\) |
\(\approx\) |
\(0.5390848846 + 0.03028277471i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.522 - 0.852i)T \) |
| 3 | \( 1 + (-0.999 - 0.0318i)T \) |
| 5 | \( 1 + (0.0663 + 0.997i)T \) |
| 7 | \( 1 + (-0.486 + 0.873i)T \) |
| 11 | \( 1 + (0.996 - 0.0875i)T \) |
| 13 | \( 1 + (-0.890 + 0.455i)T \) |
| 17 | \( 1 + (-0.231 - 0.972i)T \) |
| 19 | \( 1 + (-0.960 + 0.278i)T \) |
| 23 | \( 1 + (0.582 + 0.812i)T \) |
| 29 | \( 1 + (-0.852 - 0.522i)T \) |
| 31 | \( 1 + (-0.127 + 0.991i)T \) |
| 37 | \( 1 + (-0.346 - 0.938i)T \) |
| 41 | \( 1 + (-0.798 - 0.601i)T \) |
| 43 | \( 1 + (0.762 + 0.647i)T \) |
| 47 | \( 1 + (0.211 - 0.977i)T \) |
| 53 | \( 1 + (-0.363 - 0.931i)T \) |
| 59 | \( 1 + (0.724 + 0.689i)T \) |
| 61 | \( 1 + (0.999 - 0.0292i)T \) |
| 67 | \( 1 + (-0.326 - 0.945i)T \) |
| 71 | \( 1 + (0.966 - 0.257i)T \) |
| 73 | \( 1 + (0.995 - 0.0902i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + (-0.295 - 0.955i)T \) |
| 89 | \( 1 + (0.641 + 0.767i)T \) |
| 97 | \( 1 + (0.486 - 0.873i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.64691139715581094831043661795, −17.2251620383185539079070236833, −16.87615219750903053511156701097, −16.5673386064455656816706900663, −15.61005668398462870566821035930, −15.04255703558516905990348282294, −14.2982221725263582839432673234, −13.24083119931618782140756178898, −12.87744895851934126017800224897, −12.233977271057235925668074063655, −11.15461663617691921357790190740, −10.60746215592124508054179509465, −9.83324700305880895185223956377, −9.38656208514919664205997563976, −8.53318618259188128783218445079, −7.779465173370124459723618691855, −6.92298187216868776899733347628, −6.50416121207172234886521661292, −5.77085641706673429765343120926, −4.98635559556094842465870042330, −4.34871140473569829575265200906, −3.85565326568275883340482606295, −2.050507737783961225045730929549, −1.17161683757572445170088724308, −0.519488928378287677508233705,
0.486699956743632613939432574207, 1.89248681546324731024549139395, 2.20422319307004195966055323744, 3.331480316783098570872524312032, 3.89486340364380987292688188859, 4.90280871989277148182898246280, 5.63334109407306157193625935613, 6.70645272405597343365225300140, 6.91592573927889607312770423221, 7.79062746237901307002750691481, 9.04148064951692421688696308375, 9.383236285762170598424005099900, 10.10008925505492231562983613797, 10.78327279373193844733659004722, 11.54192765127378499778997972226, 11.803909062706346243128523387439, 12.49172400301320663621554531095, 13.20474783511355927389807979285, 14.071695362169033896176507745256, 14.84543067466209896294891651058, 15.627835515825796086832355983119, 16.40773901851153814274744483855, 17.03574931146885552419615083400, 17.63926909662599953218016693378, 18.17877189471568337680003965658