L(s) = 1 | + (0.868 − 0.495i)2-s + (−0.582 + 0.812i)3-s + (0.509 − 0.860i)4-s + (−0.488 − 0.872i)5-s + (−0.103 + 0.994i)6-s + (0.952 − 0.305i)7-s + (0.0159 − 0.999i)8-s + (−0.321 − 0.947i)9-s + (−0.856 − 0.516i)10-s + (0.139 + 0.990i)11-s + (0.402 + 0.915i)12-s + (−0.198 + 0.980i)13-s + (0.675 − 0.737i)14-s + (0.993 + 0.111i)15-s + (−0.481 − 0.876i)16-s + (0.805 − 0.592i)17-s + ⋯ |
L(s) = 1 | + (0.868 − 0.495i)2-s + (−0.582 + 0.812i)3-s + (0.509 − 0.860i)4-s + (−0.488 − 0.872i)5-s + (−0.103 + 0.994i)6-s + (0.952 − 0.305i)7-s + (0.0159 − 0.999i)8-s + (−0.321 − 0.947i)9-s + (−0.856 − 0.516i)10-s + (0.139 + 0.990i)11-s + (0.402 + 0.915i)12-s + (−0.198 + 0.980i)13-s + (0.675 − 0.737i)14-s + (0.993 + 0.111i)15-s + (−0.481 − 0.876i)16-s + (0.805 − 0.592i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.311 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.311 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.441402643 - 1.768617818i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.441402643 - 1.768617818i\) |
\(L(1)\) |
\(\approx\) |
\(1.395711947 - 0.3828770283i\) |
\(L(1)\) |
\(\approx\) |
\(1.395711947 - 0.3828770283i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.868 - 0.495i)T \) |
| 3 | \( 1 + (-0.582 + 0.812i)T \) |
| 5 | \( 1 + (-0.488 - 0.872i)T \) |
| 7 | \( 1 + (0.952 - 0.305i)T \) |
| 11 | \( 1 + (0.139 + 0.990i)T \) |
| 13 | \( 1 + (-0.198 + 0.980i)T \) |
| 17 | \( 1 + (0.805 - 0.592i)T \) |
| 19 | \( 1 + (-0.709 + 0.704i)T \) |
| 23 | \( 1 + (0.940 - 0.339i)T \) |
| 29 | \( 1 + (-0.964 + 0.263i)T \) |
| 31 | \( 1 + (-0.131 + 0.991i)T \) |
| 37 | \( 1 + (-0.984 - 0.174i)T \) |
| 41 | \( 1 + (0.0279 - 0.999i)T \) |
| 43 | \( 1 + (0.391 + 0.920i)T \) |
| 47 | \( 1 + (0.217 - 0.976i)T \) |
| 53 | \( 1 + (-0.982 + 0.186i)T \) |
| 59 | \( 1 + (0.633 - 0.773i)T \) |
| 61 | \( 1 + (0.841 - 0.539i)T \) |
| 67 | \( 1 + (-0.830 - 0.556i)T \) |
| 71 | \( 1 + (0.358 + 0.933i)T \) |
| 73 | \( 1 + (-0.190 - 0.981i)T \) |
| 79 | \( 1 + (-0.707 + 0.707i)T \) |
| 83 | \( 1 + (0.351 + 0.936i)T \) |
| 89 | \( 1 + (0.225 + 0.974i)T \) |
| 97 | \( 1 + (0.305 + 0.952i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.98987957151962024013588114687, −17.24520591782794249319358945773, −17.03934123439873982823646644162, −15.96514444500511415427630404100, −15.316785233288331118647013799081, −14.6496722660157513618078268629, −14.29557428595136353937267710253, −13.229243410718997837105497694399, −12.997682600530790700336380416617, −11.92094217056909453519701218955, −11.58836303882660329447654753395, −10.909714455281008959867577538007, −10.50637113579844349848736627533, −8.85297372766429883072114256312, −8.1304046809467326898068267148, −7.65019559155634083106571489945, −7.11706651083821432464650037263, −6.169911236940235817841327366023, −5.75125297933427234769853084724, −5.088311027620925156842144327175, −4.17972343495223618014706551613, −3.24967740106799395817430966661, −2.64457663718621358889050066162, −1.77403442886894677075137670815, −0.65087040779238972017399333665,
0.4580659208976797356928248782, 1.40410434873084424953919663344, 1.98773609858619371036073495751, 3.342775987225613500233921486726, 4.03617045573300461071460937361, 4.53204535857610014159186588751, 5.12122270714049427115079765936, 5.535979765833223115355303557274, 6.785304768888514927468546692638, 7.25725550129898123812812279493, 8.39318114281302404610723834702, 9.24895172651796977756181709135, 9.76137038117563741179786266531, 10.68907851508739568181037364465, 11.12041418734314880199797773989, 11.97155201616188493225992451098, 12.22403475349299021934189326448, 12.89051852401173467731124510490, 14.02808947209243126372462418973, 14.547585574728600333935434087159, 15.03930911434352539905906258301, 15.808455888746759471787249999885, 16.49230149693059490598952488610, 16.966938006530663865584869251451, 17.68576036158982880921307238887