L(s) = 1 | + (0.963 + 0.267i)2-s + (0.954 + 0.298i)3-s + (0.856 + 0.516i)4-s + (−0.627 + 0.778i)5-s + (0.839 + 0.543i)6-s + (0.150 + 0.988i)7-s + (0.687 + 0.726i)8-s + (0.821 + 0.569i)9-s + (−0.812 + 0.582i)10-s + (−0.0478 − 0.998i)11-s + (0.663 + 0.748i)12-s + (0.675 − 0.737i)13-s + (−0.119 + 0.992i)14-s + (−0.830 + 0.556i)15-s + (0.467 + 0.884i)16-s + (−0.127 − 0.991i)17-s + ⋯ |
L(s) = 1 | + (0.963 + 0.267i)2-s + (0.954 + 0.298i)3-s + (0.856 + 0.516i)4-s + (−0.627 + 0.778i)5-s + (0.839 + 0.543i)6-s + (0.150 + 0.988i)7-s + (0.687 + 0.726i)8-s + (0.821 + 0.569i)9-s + (−0.812 + 0.582i)10-s + (−0.0478 − 0.998i)11-s + (0.663 + 0.748i)12-s + (0.675 − 0.737i)13-s + (−0.119 + 0.992i)14-s + (−0.830 + 0.556i)15-s + (0.467 + 0.884i)16-s + (−0.127 − 0.991i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.279 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.279 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.147348293 + 4.192372834i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.147348293 + 4.192372834i\) |
\(L(1)\) |
\(\approx\) |
\(2.277665157 + 1.349256445i\) |
\(L(1)\) |
\(\approx\) |
\(2.277665157 + 1.349256445i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.963 + 0.267i)T \) |
| 3 | \( 1 + (0.954 + 0.298i)T \) |
| 5 | \( 1 + (-0.627 + 0.778i)T \) |
| 7 | \( 1 + (0.150 + 0.988i)T \) |
| 11 | \( 1 + (-0.0478 - 0.998i)T \) |
| 13 | \( 1 + (0.675 - 0.737i)T \) |
| 17 | \( 1 + (-0.127 - 0.991i)T \) |
| 19 | \( 1 + (0.549 + 0.835i)T \) |
| 23 | \( 1 + (0.930 + 0.366i)T \) |
| 29 | \( 1 + (0.267 + 0.963i)T \) |
| 31 | \( 1 + (-0.936 + 0.351i)T \) |
| 37 | \( 1 + (0.887 - 0.460i)T \) |
| 41 | \( 1 + (0.595 - 0.803i)T \) |
| 43 | \( 1 + (0.620 - 0.783i)T \) |
| 47 | \( 1 + (-0.826 + 0.563i)T \) |
| 53 | \( 1 + (-0.608 + 0.793i)T \) |
| 59 | \( 1 + (-0.915 - 0.402i)T \) |
| 61 | \( 1 + (0.0159 + 0.999i)T \) |
| 67 | \( 1 + (-0.244 + 0.969i)T \) |
| 71 | \( 1 + (0.989 + 0.143i)T \) |
| 73 | \( 1 + (0.944 - 0.328i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (0.522 - 0.852i)T \) |
| 89 | \( 1 + (0.190 - 0.981i)T \) |
| 97 | \( 1 + (-0.150 - 0.988i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.07457848661013017661305999717, −17.123813693306033065854852587273, −16.438655319890270397831610064203, −15.75308805976174273994485000479, −15.044937705496145264732214066686, −14.65763046888736358379016900953, −13.78001628839884829214264375587, −13.14492286338507866982926170335, −12.90385403907770758035477454083, −12.093761888468845570126454502431, −11.2716063468936356000741929891, −10.75195074302630800298813696308, −9.58733726929711579815422803011, −9.31179893369235878066179576888, −7.9911521396438768983540378697, −7.79349144676704871886249488204, −6.80514816730453447948083318159, −6.41574776057850651819980193247, −4.99314548070764017936297343050, −4.47193430987182296379038479555, −3.95427439077687948998556430145, −3.32329304549580417658734964702, −2.290441442955368993376064468791, −1.50356124488456926604818049429, −0.90462591101807727278354962364,
1.303906586486773894558042305659, 2.432628005491803680225742869219, 3.07383709796442583119249954849, 3.34721390653562858012525961101, 4.167638848299794403970210975623, 5.19782503341551840364490869963, 5.68922574287821648499765500396, 6.59563415724968422152576907015, 7.48412785503698650053416588177, 7.871167737342663373752668714337, 8.68506291474916257492275509671, 9.26437269179799787533486821098, 10.51047114123428785524759909538, 11.00310862277745177255178569227, 11.59290319295839709502730715464, 12.50466079783855146105029571693, 13.01972017663259496255628877525, 14.09964793587964709344765604434, 14.169125967848378364220518136150, 14.98354379404782296139680591041, 15.62552525068819510153866023591, 15.9523470187281927582488204611, 16.52737609801868544651982601039, 17.90280554364664969905867337149, 18.49745195124283519592829363019