L(s) = 1 | + (−0.996 − 0.0796i)2-s + (0.995 − 0.0955i)3-s + (0.987 + 0.158i)4-s + (0.198 − 0.980i)5-s + (−0.999 + 0.0159i)6-s + (−0.998 − 0.0478i)7-s + (−0.971 − 0.236i)8-s + (0.981 − 0.190i)9-s + (−0.275 + 0.961i)10-s + (−0.260 + 0.965i)11-s + (0.997 + 0.0637i)12-s + (−0.150 − 0.988i)13-s + (0.991 + 0.127i)14-s + (0.103 − 0.994i)15-s + (0.949 + 0.313i)16-s + (−0.763 − 0.645i)17-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0796i)2-s + (0.995 − 0.0955i)3-s + (0.987 + 0.158i)4-s + (0.198 − 0.980i)5-s + (−0.999 + 0.0159i)6-s + (−0.998 − 0.0478i)7-s + (−0.971 − 0.236i)8-s + (0.981 − 0.190i)9-s + (−0.275 + 0.961i)10-s + (−0.260 + 0.965i)11-s + (0.997 + 0.0637i)12-s + (−0.150 − 0.988i)13-s + (0.991 + 0.127i)14-s + (0.103 − 0.994i)15-s + (0.949 + 0.313i)16-s + (−0.763 − 0.645i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.753 + 0.657i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.07633737934 - 0.2035811038i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.07633737934 - 0.2035811038i\) |
\(L(1)\) |
\(\approx\) |
\(0.7021847518 - 0.2290069300i\) |
\(L(1)\) |
\(\approx\) |
\(0.7021847518 - 0.2290069300i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.996 - 0.0796i)T \) |
| 3 | \( 1 + (0.995 - 0.0955i)T \) |
| 5 | \( 1 + (0.198 - 0.980i)T \) |
| 7 | \( 1 + (-0.998 - 0.0478i)T \) |
| 11 | \( 1 + (-0.260 + 0.965i)T \) |
| 13 | \( 1 + (-0.150 - 0.988i)T \) |
| 17 | \( 1 + (-0.763 - 0.645i)T \) |
| 19 | \( 1 + (-0.663 - 0.748i)T \) |
| 23 | \( 1 + (-0.290 + 0.956i)T \) |
| 29 | \( 1 + (0.996 - 0.0796i)T \) |
| 31 | \( 1 + (-0.927 + 0.373i)T \) |
| 37 | \( 1 + (0.872 - 0.488i)T \) |
| 41 | \( 1 + (0.933 - 0.358i)T \) |
| 43 | \( 1 + (-0.856 + 0.516i)T \) |
| 47 | \( 1 + (-0.803 + 0.595i)T \) |
| 53 | \( 1 + (-0.439 - 0.898i)T \) |
| 59 | \( 1 + (0.651 + 0.758i)T \) |
| 61 | \( 1 + (0.0875 - 0.996i)T \) |
| 67 | \( 1 + (0.839 - 0.543i)T \) |
| 71 | \( 1 + (-0.709 - 0.704i)T \) |
| 73 | \( 1 + (-0.963 - 0.267i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.783 - 0.620i)T \) |
| 89 | \( 1 + (-0.495 + 0.868i)T \) |
| 97 | \( 1 + (-0.998 - 0.0478i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.58536358664055873535891995565, −18.32044535257279885608224249887, −17.20871092323824469743453078372, −16.40054918162498518424786927515, −16.07640262761471587508447639802, −15.23173719160653648365005427026, −14.63721613621518612357669642273, −14.11398131011086723029798015643, −13.234721114598346966492962151684, −12.60337774293447046283415120623, −11.56069136247996301062214016815, −10.871769560331140264821662218312, −10.12719138305207548023648820126, −9.86422847119304116068276059305, −8.855971193113100034270071128606, −8.5340208638742846991091250279, −7.69734881163049262831397340993, −6.83443915666291657060741187427, −6.45755437031433646705020130977, −5.82368667599415451965093072634, −4.24067953873639508445799807414, −3.56693639733100194777154614811, −2.71855646561710739509771638670, −2.35003999807172416721464326411, −1.43624219631356950979489336210,
0.069361034972540049871068432534, 1.06025466450929103486960928814, 2.02371335916256796520565289536, 2.594987135104717642848502070699, 3.35510645666908886940967518898, 4.31041851059844936540585267124, 5.16682376322291058060045682527, 6.23341769502271543071650081736, 6.94025770847236248901321302924, 7.63096145077709268361622173744, 8.207782907860335192089987148932, 9.0550847751826187527947211318, 9.42006353800236565609289377341, 9.94691748827875687358037857723, 10.64124663114192024654408505368, 11.70579159107121843976322903895, 12.61622499693636037633171018998, 12.90084815796596896293008469438, 13.44787904817824664166195861513, 14.60587560856661258311912780263, 15.30760118420736791647778835575, 15.96337459355366673926919454155, 16.1391641028838738403613483947, 17.32575050122363492175053910798, 17.778289572498979348435838069892