L(s) = 1 | + (0.275 + 0.961i)2-s + (0.944 + 0.328i)3-s + (−0.848 + 0.529i)4-s + (0.0875 − 0.996i)5-s + (−0.0557 + 0.998i)6-s + (−0.166 − 0.986i)7-s + (−0.742 − 0.669i)8-s + (0.783 + 0.620i)9-s + (0.981 − 0.190i)10-s + (0.990 − 0.135i)11-s + (−0.975 + 0.221i)12-s + (0.967 − 0.252i)13-s + (0.901 − 0.431i)14-s + (0.410 − 0.912i)15-s + (0.439 − 0.898i)16-s + (0.633 − 0.773i)17-s + ⋯ |
L(s) = 1 | + (0.275 + 0.961i)2-s + (0.944 + 0.328i)3-s + (−0.848 + 0.529i)4-s + (0.0875 − 0.996i)5-s + (−0.0557 + 0.998i)6-s + (−0.166 − 0.986i)7-s + (−0.742 − 0.669i)8-s + (0.783 + 0.620i)9-s + (0.981 − 0.190i)10-s + (0.990 − 0.135i)11-s + (−0.975 + 0.221i)12-s + (0.967 − 0.252i)13-s + (0.901 − 0.431i)14-s + (0.410 − 0.912i)15-s + (0.439 − 0.898i)16-s + (0.633 − 0.773i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.531i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.531i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.206055418 + 0.9228257585i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.206055418 + 0.9228257585i\) |
\(L(1)\) |
\(\approx\) |
\(1.694681484 + 0.5552510442i\) |
\(L(1)\) |
\(\approx\) |
\(1.694681484 + 0.5552510442i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.275 + 0.961i)T \) |
| 3 | \( 1 + (0.944 + 0.328i)T \) |
| 5 | \( 1 + (0.0875 - 0.996i)T \) |
| 7 | \( 1 + (-0.166 - 0.986i)T \) |
| 11 | \( 1 + (0.990 - 0.135i)T \) |
| 13 | \( 1 + (0.967 - 0.252i)T \) |
| 17 | \( 1 + (0.633 - 0.773i)T \) |
| 19 | \( 1 + (-0.182 + 0.983i)T \) |
| 23 | \( 1 + (0.969 - 0.244i)T \) |
| 29 | \( 1 + (-0.961 - 0.275i)T \) |
| 31 | \( 1 + (0.973 - 0.229i)T \) |
| 37 | \( 1 + (-0.213 + 0.976i)T \) |
| 41 | \( 1 + (0.283 + 0.959i)T \) |
| 43 | \( 1 + (0.947 + 0.321i)T \) |
| 47 | \( 1 + (-0.788 - 0.614i)T \) |
| 53 | \( 1 + (0.692 + 0.721i)T \) |
| 59 | \( 1 + (-0.991 - 0.127i)T \) |
| 61 | \( 1 + (-0.460 + 0.887i)T \) |
| 67 | \( 1 + (-0.424 + 0.905i)T \) |
| 71 | \( 1 + (0.395 - 0.918i)T \) |
| 73 | \( 1 + (0.812 + 0.582i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (0.698 - 0.715i)T \) |
| 89 | \( 1 + (-0.516 + 0.856i)T \) |
| 97 | \( 1 + (0.166 + 0.986i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.329983848778510532329744635054, −17.83708238058387174313468345833, −17.020068683471194945175930024767, −15.54235675261017733065424876382, −15.31859457998995610247178214743, −14.48099094375188147759687446309, −14.14976722535192485747136568085, −13.380183809333571758518245267626, −12.69036952384969520231577176487, −12.137895744486579552705286564052, −11.26548193796254143425492078997, −10.83264747920804014938918178342, −9.84977055663680281937311480329, −9.164478070034034221757404038708, −8.88293019081686431452635067191, −7.98507777185179818874068612492, −6.96854379195001241143931293565, −6.310584718003242915849612453295, −5.66224988935378971999610647972, −4.50890099860620690098167214583, −3.515724185080342293436568159618, −3.39056783348299563243670760016, −2.3836925791841425813874582187, −1.89364954794046631975023843545, −1.025198017396325480730267852913,
0.8908004016040013681269797289, 1.44443292085033173443332411565, 3.01089162599002323508900390253, 3.63429244313840010634343511060, 4.267742080932450802188066345220, 4.76907933062700712749842061917, 5.75905035955475987060270773289, 6.47287157314130315118115244226, 7.35727853184781822549257986254, 7.97296050037359369900504280243, 8.50549909501330373893683142891, 9.27496168778156152878007319761, 9.66598028177911307063452420183, 10.507952754690201107772240296, 11.63322596627698363372099542341, 12.45782343023208640659121978241, 13.28316532824565793286252234494, 13.53570670561591588047569802109, 14.19868820397466821026515511132, 14.8445919415499558122578176334, 15.542803904451681924738833362871, 16.402813976337385659899919273069, 16.603616168826212280472011851468, 17.1601177714662145246089859264, 18.15103566258565916342533348293