L(s) = 1 | + (0.00797 − 0.999i)2-s + (0.803 − 0.595i)3-s + (−0.999 − 0.0159i)4-s + (0.721 − 0.692i)5-s + (−0.589 − 0.808i)6-s + (0.949 + 0.313i)7-s + (−0.0239 + 0.999i)8-s + (0.290 − 0.956i)9-s + (−0.687 − 0.726i)10-s + (0.182 − 0.983i)11-s + (−0.812 + 0.582i)12-s + (0.467 + 0.884i)13-s + (0.321 − 0.947i)14-s + (0.166 − 0.986i)15-s + (0.999 + 0.0318i)16-s + (0.848 − 0.529i)17-s + ⋯ |
L(s) = 1 | + (0.00797 − 0.999i)2-s + (0.803 − 0.595i)3-s + (−0.999 − 0.0159i)4-s + (0.721 − 0.692i)5-s + (−0.589 − 0.808i)6-s + (0.949 + 0.313i)7-s + (−0.0239 + 0.999i)8-s + (0.290 − 0.956i)9-s + (−0.687 − 0.726i)10-s + (0.182 − 0.983i)11-s + (−0.812 + 0.582i)12-s + (0.467 + 0.884i)13-s + (0.321 − 0.947i)14-s + (0.166 − 0.986i)15-s + (0.999 + 0.0318i)16-s + (0.848 − 0.529i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0267i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.03916927803 - 2.928307805i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.03916927803 - 2.928307805i\) |
\(L(1)\) |
\(\approx\) |
\(0.9821994358 - 1.296410471i\) |
\(L(1)\) |
\(\approx\) |
\(0.9821994358 - 1.296410471i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.00797 - 0.999i)T \) |
| 3 | \( 1 + (0.803 - 0.595i)T \) |
| 5 | \( 1 + (0.721 - 0.692i)T \) |
| 7 | \( 1 + (0.949 + 0.313i)T \) |
| 11 | \( 1 + (0.182 - 0.983i)T \) |
| 13 | \( 1 + (0.467 + 0.884i)T \) |
| 17 | \( 1 + (0.848 - 0.529i)T \) |
| 19 | \( 1 + (-0.921 - 0.388i)T \) |
| 23 | \( 1 + (-0.991 + 0.127i)T \) |
| 29 | \( 1 + (-0.00797 - 0.999i)T \) |
| 31 | \( 1 + (0.830 + 0.556i)T \) |
| 37 | \( 1 + (0.260 - 0.965i)T \) |
| 41 | \( 1 + (-0.939 + 0.343i)T \) |
| 43 | \( 1 + (-0.839 - 0.543i)T \) |
| 47 | \( 1 + (-0.997 + 0.0637i)T \) |
| 53 | \( 1 + (0.993 + 0.111i)T \) |
| 59 | \( 1 + (0.856 - 0.516i)T \) |
| 61 | \( 1 + (0.894 - 0.446i)T \) |
| 67 | \( 1 + (-0.773 + 0.633i)T \) |
| 71 | \( 1 + (0.522 + 0.852i)T \) |
| 73 | \( 1 + (0.959 - 0.283i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (-0.244 + 0.969i)T \) |
| 89 | \( 1 + (-0.742 + 0.669i)T \) |
| 97 | \( 1 + (0.949 + 0.313i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.227935677394853450815802129909, −17.8629519535960677083843021177, −16.99481617286434635148326816292, −16.636655509519726591055780792809, −15.518098116041043743583377360233, −14.98502722391181980061868377161, −14.664470391514905885043709963288, −14.11626497625614486378820414762, −13.38082161368338745544494890207, −12.846122943195398407726326830500, −11.75711905673801160468542737082, −10.56706254518613653326683024109, −10.14400919368826136459061219743, −9.812358300854329764258533127871, −8.6325636140618292576556531199, −8.24161774590879028594364843692, −7.60809262100679601650715167973, −6.851765340229145257817955620939, −6.03169658954333300431152990560, −5.27034296666392531407874270958, −4.60323914388186185054042743342, −3.84499103488719002488931808016, −3.16345696374452513012257335387, −2.02889554529205701496822326737, −1.37200881966002358386820059723,
0.69162044672380769316869083516, 1.40966064274041242906867632803, 2.05620028518537292075508815670, 2.60322912666545859485151517543, 3.673920210936159431441132186145, 4.27173353996629155353628259418, 5.17402188156986229114277417043, 5.888223189073207532791803414856, 6.700576016981018194108370478461, 8.00091701217277469534769717657, 8.43659977799810496934342889362, 8.82094972315951987831413064024, 9.632733630449398221380844091393, 10.19391700245501123135213665842, 11.33063107181473073799663176117, 11.76004917960495742361761071276, 12.37810827159804995196972647764, 13.24541469651086746764077401865, 13.7060264042259161546887526132, 14.18286107526510869985925359634, 14.70247310329815581670870319672, 15.803718342915035167803423215178, 16.74069402061126396523262790901, 17.36764971480856650667487437722, 18.09642907009581205855062683773