L(s) = 1 | + (0.933 + 0.358i)2-s + (0.481 − 0.876i)3-s + (0.742 + 0.669i)4-s + (0.129 + 0.991i)5-s + (0.763 − 0.645i)6-s + (0.490 + 0.871i)7-s + (0.453 + 0.891i)8-s + (−0.536 − 0.843i)9-s + (−0.234 + 0.972i)10-s + (0.835 + 0.549i)11-s + (0.944 − 0.328i)12-s + (−0.140 + 0.990i)13-s + (0.145 + 0.989i)14-s + (0.931 + 0.363i)15-s + (0.103 + 0.994i)16-s + (0.999 − 0.0186i)17-s + ⋯ |
L(s) = 1 | + (0.933 + 0.358i)2-s + (0.481 − 0.876i)3-s + (0.742 + 0.669i)4-s + (0.129 + 0.991i)5-s + (0.763 − 0.645i)6-s + (0.490 + 0.871i)7-s + (0.453 + 0.891i)8-s + (−0.536 − 0.843i)9-s + (−0.234 + 0.972i)10-s + (0.835 + 0.549i)11-s + (0.944 − 0.328i)12-s + (−0.140 + 0.990i)13-s + (0.145 + 0.989i)14-s + (0.931 + 0.363i)15-s + (0.103 + 0.994i)16-s + (0.999 − 0.0186i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.148 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.148 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.080993321 + 3.579884233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.080993321 + 3.579884233i\) |
\(L(1)\) |
\(\approx\) |
\(2.245608188 + 0.9691640194i\) |
\(L(1)\) |
\(\approx\) |
\(2.245608188 + 0.9691640194i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.933 + 0.358i)T \) |
| 3 | \( 1 + (0.481 - 0.876i)T \) |
| 5 | \( 1 + (0.129 + 0.991i)T \) |
| 7 | \( 1 + (0.490 + 0.871i)T \) |
| 11 | \( 1 + (0.835 + 0.549i)T \) |
| 13 | \( 1 + (-0.140 + 0.990i)T \) |
| 17 | \( 1 + (0.999 - 0.0186i)T \) |
| 19 | \( 1 + (-0.0132 + 0.999i)T \) |
| 23 | \( 1 + (0.402 - 0.915i)T \) |
| 29 | \( 1 + (0.358 + 0.933i)T \) |
| 31 | \( 1 + (-0.905 - 0.424i)T \) |
| 37 | \( 1 + (0.0610 - 0.998i)T \) |
| 41 | \( 1 + (0.417 + 0.908i)T \) |
| 43 | \( 1 + (-0.730 - 0.683i)T \) |
| 47 | \( 1 + (-0.744 - 0.667i)T \) |
| 53 | \( 1 + (0.100 + 0.994i)T \) |
| 59 | \( 1 + (0.326 + 0.945i)T \) |
| 61 | \( 1 + (0.981 + 0.192i)T \) |
| 67 | \( 1 + (-0.606 - 0.795i)T \) |
| 71 | \( 1 + (-0.643 - 0.765i)T \) |
| 73 | \( 1 + (-0.114 - 0.993i)T \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.988 - 0.148i)T \) |
| 89 | \( 1 + (-0.231 - 0.972i)T \) |
| 97 | \( 1 + (-0.490 - 0.871i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.66013766551700918138090364836, −17.153563327390158203805353572608, −16.43578316944851201685605762340, −15.936207302742519274427544943018, −15.15612610992233708304806457837, −14.53212819726024453819029361179, −13.96067291966988542671968183799, −13.30462082909305716834214268193, −12.86671325638104858701907781857, −11.71114001799475688126693645309, −11.37785395161819191829415413919, −10.5394241472802479450815060227, −9.85375062711228100346171763735, −9.35836690324135033079909538059, −8.33891145088643773887284160914, −7.804483726350539428496383131647, −6.84796692285556999029992926648, −5.77154434739538243287819882496, −5.148256821172925656469287439129, −4.73474823543425807307530152230, −3.77875133380976331439897907119, −3.488722018641129583541073440628, −2.497596881362628499628013261231, −1.4180716080160267034452153921, −0.79449159519108975310913803326,
1.63217811976102892894750295766, 1.91832783848993049237908460752, 2.80363823259807162459576007135, 3.464644806985911032812802751387, 4.226639498022629894216596174247, 5.26500988608440678239819049356, 6.07495757024391071871330311707, 6.501036871251169220621965917450, 7.28257273331969103503742899957, 7.69638463364773615078972726734, 8.64505484745770015527986910067, 9.255621992580864817876827254605, 10.316221443935870689677594787279, 11.26345753955590274506228277413, 11.9211718515218400443233978682, 12.227201172975024730378962417422, 12.95919168916016707730490164690, 13.959387796440870664813241477649, 14.38778946537984388854438107329, 14.771975779409136333127637546825, 15.133614268594599972818895751898, 16.45073557749437417709606455855, 16.79688466082791170669831115671, 17.95937854489077523767049431646, 18.19178511658403693540083246466