L(s) = 1 | + (−0.753 − 0.657i)2-s + (0.651 − 0.758i)3-s + (0.135 + 0.990i)4-s + (−0.679 + 0.733i)5-s + (−0.989 + 0.143i)6-s + (0.815 − 0.578i)7-s + (0.549 − 0.835i)8-s + (−0.150 − 0.988i)9-s + (0.994 − 0.106i)10-s + (0.698 + 0.715i)11-s + (0.839 + 0.543i)12-s + (0.667 − 0.744i)13-s + (−0.994 − 0.100i)14-s + (0.114 + 0.993i)15-s + (−0.963 + 0.267i)16-s + (−0.527 + 0.849i)17-s + ⋯ |
L(s) = 1 | + (−0.753 − 0.657i)2-s + (0.651 − 0.758i)3-s + (0.135 + 0.990i)4-s + (−0.679 + 0.733i)5-s + (−0.989 + 0.143i)6-s + (0.815 − 0.578i)7-s + (0.549 − 0.835i)8-s + (−0.150 − 0.988i)9-s + (0.994 − 0.106i)10-s + (0.698 + 0.715i)11-s + (0.839 + 0.543i)12-s + (0.667 − 0.744i)13-s + (−0.994 − 0.100i)14-s + (0.114 + 0.993i)15-s + (−0.963 + 0.267i)16-s + (−0.527 + 0.849i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.457328635 - 0.7428383259i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.457328635 - 0.7428383259i\) |
\(L(1)\) |
\(\approx\) |
\(0.9212069425 - 0.3767579359i\) |
\(L(1)\) |
\(\approx\) |
\(0.9212069425 - 0.3767579359i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.753 - 0.657i)T \) |
| 3 | \( 1 + (0.651 - 0.758i)T \) |
| 5 | \( 1 + (-0.679 + 0.733i)T \) |
| 7 | \( 1 + (0.815 - 0.578i)T \) |
| 11 | \( 1 + (0.698 + 0.715i)T \) |
| 13 | \( 1 + (0.667 - 0.744i)T \) |
| 17 | \( 1 + (-0.527 + 0.849i)T \) |
| 19 | \( 1 + (0.962 + 0.272i)T \) |
| 23 | \( 1 + (0.467 + 0.884i)T \) |
| 29 | \( 1 + (-0.753 + 0.657i)T \) |
| 31 | \( 1 + (-0.954 + 0.298i)T \) |
| 37 | \( 1 + (-0.800 - 0.599i)T \) |
| 41 | \( 1 + (0.987 - 0.158i)T \) |
| 43 | \( 1 + (0.770 - 0.637i)T \) |
| 47 | \( 1 + (-0.875 + 0.483i)T \) |
| 53 | \( 1 + (-0.0981 + 0.995i)T \) |
| 59 | \( 1 + (0.809 - 0.586i)T \) |
| 61 | \( 1 + (0.964 + 0.262i)T \) |
| 67 | \( 1 + (0.558 - 0.829i)T \) |
| 71 | \( 1 + (-0.224 + 0.974i)T \) |
| 73 | \( 1 + (0.177 + 0.984i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.265 - 0.964i)T \) |
| 89 | \( 1 + (0.458 - 0.888i)T \) |
| 97 | \( 1 + (0.815 - 0.578i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.33811656871500926852110824495, −17.47219868480362744595824554649, −16.656359474125352221219673040598, −16.166812601888089028798743051219, −15.84187754947216374367102494394, −14.967646317855911754764226761561, −14.52370707952849807384722491752, −13.8306916706720307126907279991, −13.152609188124446940016779358219, −11.77750520413176450173610562227, −11.3139466698789366453566820750, −10.95380890015949323235219714706, −9.65805218946288196080873135890, −9.158679675479515157118133656256, −8.75094003518249415339681593944, −8.19660960374208805394185664228, −7.520273862032176365201757716119, −6.67494573504227536414229833819, −5.6092183175608551224607657017, −5.05141215597480885563186887982, −4.37978558773266603827858935366, −3.62629884175491556296502288303, −2.49251993837529209339829502526, −1.63992416686932568240852831417, −0.73051803487634970153330866450,
0.79268493845302194171445556094, 1.56877757871403430176542220698, 2.11374306683056327746866851196, 3.294745822878390546579796052191, 3.61345073147271240359912683653, 4.310146115620995889453027249286, 5.68717410286077319132436650206, 6.79491674025401763278062426091, 7.400776719578927781354721380027, 7.611330498057910489247171451937, 8.50188844902846053571490433617, 9.026950741585283778051889430154, 9.92099682241446851920145068109, 10.74393066018060304925794067575, 11.24591309710226162433413313611, 11.82460310019991667404214372070, 12.68385861502853989846672637493, 13.0999698441818780467565081580, 14.18015715158782222565466705373, 14.50139609003871760348180330538, 15.411403970068911537672698878903, 15.97396625135183609568053325275, 17.1891210352897651423597137905, 17.63988998649624288427228961928, 18.07929631744238820935828460090