L(s) = 1 | + (−0.880 + 0.474i)2-s + (−0.275 + 0.961i)3-s + (0.549 − 0.835i)4-s + (−0.944 − 0.328i)5-s + (−0.213 − 0.976i)6-s + (0.601 − 0.798i)7-s + (−0.0875 + 0.996i)8-s + (−0.848 − 0.529i)9-s + (0.987 − 0.158i)10-s + (0.366 + 0.930i)11-s + (0.651 + 0.758i)12-s + (−0.305 + 0.952i)13-s + (−0.150 + 0.988i)14-s + (0.576 − 0.817i)15-s + (−0.395 − 0.918i)16-s + (0.998 + 0.0478i)17-s + ⋯ |
L(s) = 1 | + (−0.880 + 0.474i)2-s + (−0.275 + 0.961i)3-s + (0.549 − 0.835i)4-s + (−0.944 − 0.328i)5-s + (−0.213 − 0.976i)6-s + (0.601 − 0.798i)7-s + (−0.0875 + 0.996i)8-s + (−0.848 − 0.529i)9-s + (0.987 − 0.158i)10-s + (0.366 + 0.930i)11-s + (0.651 + 0.758i)12-s + (−0.305 + 0.952i)13-s + (−0.150 + 0.988i)14-s + (0.576 − 0.817i)15-s + (−0.395 − 0.918i)16-s + (0.998 + 0.0478i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.843 + 0.536i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.843 + 0.536i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9437517400 + 0.2748219601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9437517400 + 0.2748219601i\) |
\(L(1)\) |
\(\approx\) |
\(0.6333200793 + 0.2254068793i\) |
\(L(1)\) |
\(\approx\) |
\(0.6333200793 + 0.2254068793i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.880 + 0.474i)T \) |
| 3 | \( 1 + (-0.275 + 0.961i)T \) |
| 5 | \( 1 + (-0.944 - 0.328i)T \) |
| 7 | \( 1 + (0.601 - 0.798i)T \) |
| 11 | \( 1 + (0.366 + 0.930i)T \) |
| 13 | \( 1 + (-0.305 + 0.952i)T \) |
| 17 | \( 1 + (0.998 + 0.0478i)T \) |
| 19 | \( 1 + (0.915 + 0.402i)T \) |
| 23 | \( 1 + (0.0557 - 0.998i)T \) |
| 29 | \( 1 + (0.880 + 0.474i)T \) |
| 31 | \( 1 + (-0.439 - 0.898i)T \) |
| 37 | \( 1 + (0.821 - 0.569i)T \) |
| 41 | \( 1 + (0.971 - 0.236i)T \) |
| 43 | \( 1 + (0.509 - 0.860i)T \) |
| 47 | \( 1 + (0.687 + 0.726i)T \) |
| 53 | \( 1 + (-0.803 + 0.595i)T \) |
| 59 | \( 1 + (-0.589 + 0.808i)T \) |
| 61 | \( 1 + (0.921 + 0.388i)T \) |
| 67 | \( 1 + (0.103 - 0.994i)T \) |
| 71 | \( 1 + (0.901 - 0.431i)T \) |
| 73 | \( 1 + (0.495 - 0.868i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.927 + 0.373i)T \) |
| 89 | \( 1 + (-0.0717 - 0.997i)T \) |
| 97 | \( 1 + (0.601 - 0.798i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.14802561614464685287822352081, −17.681277493039099021133440039622, −17.036919356502172670379651449124, −16.05398866846750855605995756154, −15.76580760153399225716942608120, −14.71528290201688739411483070991, −14.115967267970874248318765759471, −13.104776300738752092514155362192, −12.38619601011391796495602773769, −11.91513777278434979599763997497, −11.31002807943012761397707575463, −11.01264428916516818156711135540, −9.95795134917664571952082151983, −9.09743744103703168481988441873, −8.21635649446129096912033213533, −7.9762921046724271442216722187, −7.38135636860090207212323886253, −6.539599767583272058539319654109, −5.71748216411653356222141608444, −4.98143756676655132948073702337, −3.62045352833155864292625542227, −2.98851514481135776079311182489, −2.467258222367186917548517847541, −1.1796135809667414893854859746, −0.83528136786447378498421037535,
0.58511150394637324920820565160, 1.33603271868294535002285960748, 2.4969148257935726087155426085, 3.66508352071240222651818164879, 4.40516166077279391000803421838, 4.80577714096355592367237514750, 5.71134411509379052315875048264, 6.62807714608788355826026918175, 7.53255573061942923871534715951, 7.729633954708929975842552417799, 8.78843662221247832137358701931, 9.32945206143479933676938766247, 9.98253110063807107584814526416, 10.6941118618681758003293441660, 11.24268150454126890296106903323, 11.97755845072357399685863091133, 12.4206547433890644587665459785, 14.13132774183827266200713657950, 14.35427977900553782019021483612, 14.99473339053551362334095649049, 15.74822135001026558962355501332, 16.38589263222338711592581231550, 16.77546421334857657169931833598, 17.28379350078865058036284038926, 18.10991207481938924676326448705