L(s) = 1 | + (0.119 + 0.992i)2-s + (0.989 + 0.143i)3-s + (−0.971 + 0.236i)4-s + (−0.467 + 0.884i)5-s + (−0.0239 + 0.999i)6-s + (−0.0717 − 0.997i)7-s + (−0.351 − 0.936i)8-s + (0.959 + 0.283i)9-s + (−0.933 − 0.358i)10-s + (0.924 + 0.380i)11-s + (−0.995 + 0.0955i)12-s + (−0.848 + 0.529i)13-s + (0.981 − 0.190i)14-s + (−0.589 + 0.808i)15-s + (0.887 − 0.460i)16-s + (−0.868 − 0.495i)17-s + ⋯ |
L(s) = 1 | + (0.119 + 0.992i)2-s + (0.989 + 0.143i)3-s + (−0.971 + 0.236i)4-s + (−0.467 + 0.884i)5-s + (−0.0239 + 0.999i)6-s + (−0.0717 − 0.997i)7-s + (−0.351 − 0.936i)8-s + (0.959 + 0.283i)9-s + (−0.933 − 0.358i)10-s + (0.924 + 0.380i)11-s + (−0.995 + 0.0955i)12-s + (−0.848 + 0.529i)13-s + (0.981 − 0.190i)14-s + (−0.589 + 0.808i)15-s + (0.887 − 0.460i)16-s + (−0.868 − 0.495i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.009521044644 + 1.650416489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.009521044644 + 1.650416489i\) |
\(L(1)\) |
\(\approx\) |
\(0.9104211220 + 0.8115228761i\) |
\(L(1)\) |
\(\approx\) |
\(0.9104211220 + 0.8115228761i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.119 + 0.992i)T \) |
| 3 | \( 1 + (0.989 + 0.143i)T \) |
| 5 | \( 1 + (-0.467 + 0.884i)T \) |
| 7 | \( 1 + (-0.0717 - 0.997i)T \) |
| 11 | \( 1 + (0.924 + 0.380i)T \) |
| 13 | \( 1 + (-0.848 + 0.529i)T \) |
| 17 | \( 1 + (-0.868 - 0.495i)T \) |
| 19 | \( 1 + (-0.954 - 0.298i)T \) |
| 23 | \( 1 + (0.941 + 0.336i)T \) |
| 29 | \( 1 + (0.992 + 0.119i)T \) |
| 31 | \( 1 + (-0.543 + 0.839i)T \) |
| 37 | \( 1 + (0.721 + 0.692i)T \) |
| 41 | \( 1 + (-0.852 - 0.522i)T \) |
| 43 | \( 1 + (-0.726 + 0.687i)T \) |
| 47 | \( 1 + (0.817 - 0.576i)T \) |
| 53 | \( 1 + (0.994 - 0.103i)T \) |
| 59 | \( 1 + (0.275 - 0.961i)T \) |
| 61 | \( 1 + (-0.608 + 0.793i)T \) |
| 67 | \( 1 + (0.651 + 0.758i)T \) |
| 71 | \( 1 + (0.921 + 0.388i)T \) |
| 73 | \( 1 + (0.395 + 0.918i)T \) |
| 79 | \( 1 + iT \) |
| 83 | \( 1 + (-0.536 - 0.843i)T \) |
| 89 | \( 1 + (-0.999 - 0.00797i)T \) |
| 97 | \( 1 + (0.0717 + 0.997i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.11716522834879762575091307613, −17.16461631443164184934695262402, −16.671909776092077796310170381472, −15.37457836730405297037641217140, −15.13266579866962173365757257190, −14.48450158845178276295203680516, −13.57877653301314148945644061304, −12.93862650751619585655344351058, −12.46212955722239261441720791366, −11.99281241385316446356709596422, −11.15672578325118632317287160477, −10.31264158538266010648244517901, −9.34636935194258741373911386780, −9.08353843755301365033558871429, −8.41635268910332982311828883818, −7.988489734709765793014877712053, −6.77714334876475075258263516694, −5.867711661764209457500062178742, −4.935370123235119431129573698381, −4.30078252756499894903513781589, −3.68134957410388686338879088472, −2.79510443449088605714444671731, −2.17204249603230473335155856085, −1.43655643583034210091435468922, −0.39723156692690510034163787267,
1.08302523822515738912223219137, 2.30832609488876164101909521256, 3.14149299112837087950151340931, 3.94886009412166373749613596018, 4.36107688624320785725764795026, 5.04255084061991802886929487423, 6.67829165065260449497921135561, 6.84598326496332393576078651593, 7.20372720290720603418148521189, 8.17744276882518800159445483733, 8.75991478350810896295144849697, 9.56066543274114199335943837411, 10.08827738719010040875472915204, 10.89956024576524655013300111703, 11.83084246761737833263965716791, 12.72368450826864210160512659620, 13.46399151498713576765189037515, 14.03740008260723959829997617056, 14.55185552305195386686437612927, 15.053509924056032524298074964385, 15.59839472715678707468525119756, 16.42788636450757646180613063803, 17.08720589163564396375356680193, 17.6705588596442202603421539591, 18.54197732635535077569625888490