L(s) = 1 | + (0.424 + 0.905i)2-s + (0.864 + 0.502i)3-s + (−0.639 + 0.768i)4-s + (−0.977 − 0.211i)5-s + (−0.0875 + 0.996i)6-s + (0.966 + 0.257i)7-s + (−0.967 − 0.252i)8-s + (0.495 + 0.868i)9-s + (−0.224 − 0.974i)10-s + (−0.788 + 0.614i)11-s + (−0.939 + 0.343i)12-s + (0.540 − 0.841i)13-s + (0.177 + 0.984i)14-s + (−0.739 − 0.673i)15-s + (−0.182 − 0.983i)16-s + (0.981 − 0.192i)17-s + ⋯ |
L(s) = 1 | + (0.424 + 0.905i)2-s + (0.864 + 0.502i)3-s + (−0.639 + 0.768i)4-s + (−0.977 − 0.211i)5-s + (−0.0875 + 0.996i)6-s + (0.966 + 0.257i)7-s + (−0.967 − 0.252i)8-s + (0.495 + 0.868i)9-s + (−0.224 − 0.974i)10-s + (−0.788 + 0.614i)11-s + (−0.939 + 0.343i)12-s + (0.540 − 0.841i)13-s + (0.177 + 0.984i)14-s + (−0.739 − 0.673i)15-s + (−0.182 − 0.983i)16-s + (0.981 − 0.192i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.904 - 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.904 - 0.425i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4393941229 + 1.966330459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.4393941229 + 1.966330459i\) |
\(L(1)\) |
\(\approx\) |
\(0.9148686908 + 1.061568473i\) |
\(L(1)\) |
\(\approx\) |
\(0.9148686908 + 1.061568473i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.424 + 0.905i)T \) |
| 3 | \( 1 + (0.864 + 0.502i)T \) |
| 5 | \( 1 + (-0.977 - 0.211i)T \) |
| 7 | \( 1 + (0.966 + 0.257i)T \) |
| 11 | \( 1 + (-0.788 + 0.614i)T \) |
| 13 | \( 1 + (0.540 - 0.841i)T \) |
| 17 | \( 1 + (0.981 - 0.192i)T \) |
| 19 | \( 1 + (-0.554 + 0.832i)T \) |
| 23 | \( 1 + (-0.669 + 0.742i)T \) |
| 29 | \( 1 + (-0.905 - 0.424i)T \) |
| 31 | \( 1 + (0.860 + 0.509i)T \) |
| 37 | \( 1 + (0.187 - 0.982i)T \) |
| 41 | \( 1 + (-0.431 + 0.901i)T \) |
| 43 | \( 1 + (0.775 - 0.631i)T \) |
| 47 | \( 1 + (0.629 + 0.777i)T \) |
| 53 | \( 1 + (-0.928 + 0.370i)T \) |
| 59 | \( 1 + (0.853 - 0.520i)T \) |
| 61 | \( 1 + (-0.975 + 0.218i)T \) |
| 67 | \( 1 + (0.486 + 0.873i)T \) |
| 71 | \( 1 + (0.108 + 0.994i)T \) |
| 73 | \( 1 + (-0.567 + 0.823i)T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.0186 - 0.999i)T \) |
| 89 | \( 1 + (0.999 + 0.0292i)T \) |
| 97 | \( 1 + (-0.966 - 0.257i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.30485538393044590975232438426, −17.303616172128307418498372781404, −16.308681232409880052609111573812, −15.42988448254495554299638377483, −14.89359661650331583783202469308, −14.31946014935122081982666019071, −13.68417885813713363539890677588, −13.19041480824190763962378302557, −12.20790173357274256985448533427, −11.879243765370471230743823341252, −10.9700380773004844371874757436, −10.64841866147564045825187652515, −9.62560538141453617779527141689, −8.71145428037583241875038983197, −8.28270405622899044601432223120, −7.68961498401183215137842564871, −6.7683157647293453883865340110, −5.93643150803758715016658408734, −4.85383211587144432498212665993, −4.22481701999185555690550151701, −3.61145205018977898319597227031, −2.872207382083829705381483665, −2.13445795681051815223059421693, −1.3126989008631263222296928879, −0.42850714908568181822477781580,
1.25661881794969149002630660868, 2.45087435635814732736579292834, 3.24583215794608344855520162498, 3.99855744291454440822089245865, 4.458337434315483257924036153440, 5.340949319380635365710533165988, 5.75186597751714250674762724532, 7.195577597651931497943629668888, 7.823973389196119050924435631530, 8.00751255017625116065088777554, 8.61684193347885089580747849127, 9.51271761215690615528224066118, 10.30108253032369460667570531462, 11.11145734307445019225092845273, 12.02778282860203020792766674757, 12.63105065102554121808611131468, 13.26695059975132728563562013294, 14.166581064469462280631126540357, 14.65670839935547620545660150056, 15.18319138506526390702787276659, 15.86456437335642425969975048967, 16.035722124900998210249916053444, 17.121351074803170847465289424833, 17.71738642613996966676415872846, 18.72677689866627295762381220797