L(s) = 1 | + (0.880 + 0.474i)2-s + (0.275 + 0.961i)3-s + (0.549 + 0.835i)4-s + (0.944 − 0.328i)5-s + (−0.213 + 0.976i)6-s + (−0.601 − 0.798i)7-s + (0.0875 + 0.996i)8-s + (−0.848 + 0.529i)9-s + (0.987 + 0.158i)10-s + (0.930 + 0.366i)11-s + (−0.651 + 0.758i)12-s + (−0.305 − 0.952i)13-s + (−0.150 − 0.988i)14-s + (0.576 + 0.817i)15-s + (−0.395 + 0.918i)16-s + (−0.0478 − 0.998i)17-s + ⋯ |
L(s) = 1 | + (0.880 + 0.474i)2-s + (0.275 + 0.961i)3-s + (0.549 + 0.835i)4-s + (0.944 − 0.328i)5-s + (−0.213 + 0.976i)6-s + (−0.601 − 0.798i)7-s + (0.0875 + 0.996i)8-s + (−0.848 + 0.529i)9-s + (0.987 + 0.158i)10-s + (0.930 + 0.366i)11-s + (−0.651 + 0.758i)12-s + (−0.305 − 0.952i)13-s + (−0.150 − 0.988i)14-s + (0.576 + 0.817i)15-s + (−0.395 + 0.918i)16-s + (−0.0478 − 0.998i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.777 + 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.777 + 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.899641498 + 1.380401276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.899641498 + 1.380401276i\) |
\(L(1)\) |
\(\approx\) |
\(2.040441634 + 0.8386937816i\) |
\(L(1)\) |
\(\approx\) |
\(2.040441634 + 0.8386937816i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.880 + 0.474i)T \) |
| 3 | \( 1 + (0.275 + 0.961i)T \) |
| 5 | \( 1 + (0.944 - 0.328i)T \) |
| 7 | \( 1 + (-0.601 - 0.798i)T \) |
| 11 | \( 1 + (0.930 + 0.366i)T \) |
| 13 | \( 1 + (-0.305 - 0.952i)T \) |
| 17 | \( 1 + (-0.0478 - 0.998i)T \) |
| 19 | \( 1 + (0.915 - 0.402i)T \) |
| 23 | \( 1 + (0.998 - 0.0557i)T \) |
| 29 | \( 1 + (-0.474 - 0.880i)T \) |
| 31 | \( 1 + (-0.898 - 0.439i)T \) |
| 37 | \( 1 + (0.821 + 0.569i)T \) |
| 41 | \( 1 + (0.236 - 0.971i)T \) |
| 43 | \( 1 + (0.860 - 0.509i)T \) |
| 47 | \( 1 + (-0.726 - 0.687i)T \) |
| 53 | \( 1 + (-0.595 + 0.803i)T \) |
| 59 | \( 1 + (0.589 + 0.808i)T \) |
| 61 | \( 1 + (-0.388 - 0.921i)T \) |
| 67 | \( 1 + (0.103 + 0.994i)T \) |
| 71 | \( 1 + (-0.901 - 0.431i)T \) |
| 73 | \( 1 + (-0.495 - 0.868i)T \) |
| 79 | \( 1 - iT \) |
| 83 | \( 1 + (0.927 - 0.373i)T \) |
| 89 | \( 1 + (0.997 + 0.0717i)T \) |
| 97 | \( 1 + (0.601 + 0.798i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.36953207635183087039818047697, −17.57442696819344755499809561665, −16.66067689681405605186728553329, −16.14379674531944010483373795770, −14.81939512706893965241262586678, −14.59490380282720298064176556368, −14.115764452354076822827195037041, −13.19326856070802004671948915130, −12.83336872360316656412280068442, −12.24876590925033907365018551522, −11.39598015040104295618263632253, −11.00861724494323571182413188434, −9.76426445058484114031189528792, −9.321830874072039974741640140823, −8.76913649465146991964899027676, −7.45391937495083543330462052209, −6.74509163741715106733704261700, −6.23550933023998591661365403648, −5.76955201774514722797784152636, −4.96719980208510433007882196511, −3.707349337941620635973360919065, −3.15599597238467292404454949034, −2.43432767422881226578016060220, −1.66194598595514017471363389162, −1.209084534304439531001877390867,
0.75555545552785545172186688332, 2.11232607499628956152212757704, 2.93463581032578111792854053245, 3.46605649965029986672516090831, 4.3723799928590592488145921408, 4.90716350396994251391987873600, 5.616919537822577914241648052250, 6.24485990358664836150917851376, 7.22580158553054245270942787462, 7.64686475275452926419944182561, 8.91603346937917306026789638307, 9.32691298946158033604735435116, 9.99406207193653615057536012460, 10.75975534785955566103809169752, 11.50238772184572627712826778295, 12.31336373292458928063341101595, 13.287298980863488700044818748023, 13.469626954844096483368553105844, 14.266216408624057800155088405843, 14.81701077728243656216324410912, 15.48189808284760304382271043578, 16.302308336553361705803687467415, 16.64772722832214543373539652946, 17.39308263505264246521360720915, 17.698641524722151539210223541163