L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.848 + 0.529i)3-s + (−0.395 + 0.918i)4-s + (−0.929 − 0.368i)5-s + (−0.908 − 0.417i)6-s + (0.970 − 0.242i)7-s + (−0.984 + 0.174i)8-s + (0.439 − 0.898i)9-s + (−0.203 − 0.979i)10-s + (−0.732 − 0.681i)11-s + (−0.150 − 0.988i)12-s + (0.910 + 0.412i)13-s + (0.735 + 0.677i)14-s + (0.983 − 0.179i)15-s + (−0.687 − 0.726i)16-s + (−0.580 − 0.814i)17-s + ⋯ |
L(s) = 1 | + (0.549 + 0.835i)2-s + (−0.848 + 0.529i)3-s + (−0.395 + 0.918i)4-s + (−0.929 − 0.368i)5-s + (−0.908 − 0.417i)6-s + (0.970 − 0.242i)7-s + (−0.984 + 0.174i)8-s + (0.439 − 0.898i)9-s + (−0.203 − 0.979i)10-s + (−0.732 − 0.681i)11-s + (−0.150 − 0.988i)12-s + (0.910 + 0.412i)13-s + (0.735 + 0.677i)14-s + (0.983 − 0.179i)15-s + (−0.687 − 0.726i)16-s + (−0.580 − 0.814i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.892 - 0.450i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.892 - 0.450i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.05054645999 + 0.2121209901i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.05054645999 + 0.2121209901i\) |
\(L(1)\) |
\(\approx\) |
\(0.6785750088 + 0.3425712715i\) |
\(L(1)\) |
\(\approx\) |
\(0.6785750088 + 0.3425712715i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.549 + 0.835i)T \) |
| 3 | \( 1 + (-0.848 + 0.529i)T \) |
| 5 | \( 1 + (-0.929 - 0.368i)T \) |
| 7 | \( 1 + (0.970 - 0.242i)T \) |
| 11 | \( 1 + (-0.732 - 0.681i)T \) |
| 13 | \( 1 + (0.910 + 0.412i)T \) |
| 17 | \( 1 + (-0.580 - 0.814i)T \) |
| 19 | \( 1 + (-0.976 - 0.216i)T \) |
| 23 | \( 1 + (-0.993 + 0.111i)T \) |
| 29 | \( 1 + (0.549 - 0.835i)T \) |
| 31 | \( 1 + (-0.614 - 0.788i)T \) |
| 37 | \( 1 + (0.635 - 0.772i)T \) |
| 41 | \( 1 + (0.887 + 0.460i)T \) |
| 43 | \( 1 + (-0.518 - 0.855i)T \) |
| 47 | \( 1 + (-0.836 + 0.547i)T \) |
| 53 | \( 1 + (-0.973 - 0.226i)T \) |
| 59 | \( 1 + (-0.671 - 0.741i)T \) |
| 61 | \( 1 + (0.270 + 0.962i)T \) |
| 67 | \( 1 + (0.311 - 0.950i)T \) |
| 71 | \( 1 + (-0.988 + 0.153i)T \) |
| 73 | \( 1 + (0.999 + 0.0106i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.239 + 0.970i)T \) |
| 89 | \( 1 + (0.370 + 0.928i)T \) |
| 97 | \( 1 + (0.970 - 0.242i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.89641129906033280202359363929, −17.55453126969300906073972068193, −16.24804397943148590708985552917, −15.69649314110357438574323683950, −14.96198177404018597758121321978, −14.46765166663934215103694054001, −13.527410113901131435258498952476, −12.70792687833298312016014338815, −12.48085166053699982226423727203, −11.6360521591984539418374875342, −11.08142108633184926683525029653, −10.62936238937338421404334323367, −10.14314673407378062531451592878, −8.670477856973532713230956151112, −8.2066266639162224940975658136, −7.44525213468856695302152779552, −6.43091386951914529421320126464, −5.979353393877707080785176385180, −4.93518039322126259348200759445, −4.56370045350550421958991225308, −3.791550199482625036244890105602, −2.77447297021604321078598076435, −1.89281056435716963105766795959, −1.35620148153896716392152298135, −0.07172914577905807072754697290,
0.8147586045901983261689234523, 2.27938568041196310141586003377, 3.49133713513401974931690245995, 4.16112758541275194797688914619, 4.55176043823499779335580834397, 5.25497729635010154915628644900, 6.01212038667678760621053758593, 6.63947331539294106276568754271, 7.61142271758995966902576932321, 8.10423158537791234278313572836, 8.76842634141332877173065669732, 9.531500865111615769641493881433, 10.79493590146302706744881893170, 11.259149387844140082919186467070, 11.655726325372628095901578478346, 12.521841875237785312254861350544, 13.20078330870481334437657928221, 13.92177413818144115775090151504, 14.69882622320389843759938876436, 15.468900315722037258809107349037, 15.81890365539979088847300999111, 16.43298999926958203377758626471, 16.91062092146730745923676428573, 17.82341311043214391373195444381, 18.18471900961693882726928372043