L(s) = 1 | + (−0.589 + 0.808i)2-s + (0.991 − 0.127i)3-s + (−0.305 − 0.952i)4-s + (0.964 + 0.262i)5-s + (−0.481 + 0.876i)6-s + (−0.443 − 0.896i)7-s + (0.949 + 0.313i)8-s + (0.967 − 0.252i)9-s + (−0.780 + 0.624i)10-s + (−0.939 − 0.343i)11-s + (−0.424 − 0.905i)12-s + (−0.316 + 0.948i)13-s + (0.985 + 0.169i)14-s + (0.990 + 0.137i)15-s + (−0.812 + 0.582i)16-s + (−0.593 − 0.804i)17-s + ⋯ |
L(s) = 1 | + (−0.589 + 0.808i)2-s + (0.991 − 0.127i)3-s + (−0.305 − 0.952i)4-s + (0.964 + 0.262i)5-s + (−0.481 + 0.876i)6-s + (−0.443 − 0.896i)7-s + (0.949 + 0.313i)8-s + (0.967 − 0.252i)9-s + (−0.780 + 0.624i)10-s + (−0.939 − 0.343i)11-s + (−0.424 − 0.905i)12-s + (−0.316 + 0.948i)13-s + (0.985 + 0.169i)14-s + (0.990 + 0.137i)15-s + (−0.812 + 0.582i)16-s + (−0.593 − 0.804i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.475 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.475 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.746131203 + 1.041309731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.746131203 + 1.041309731i\) |
\(L(1)\) |
\(\approx\) |
\(1.163181118 + 0.3499561202i\) |
\(L(1)\) |
\(\approx\) |
\(1.163181118 + 0.3499561202i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.589 + 0.808i)T \) |
| 3 | \( 1 + (0.991 - 0.127i)T \) |
| 5 | \( 1 + (0.964 + 0.262i)T \) |
| 7 | \( 1 + (-0.443 - 0.896i)T \) |
| 11 | \( 1 + (-0.939 - 0.343i)T \) |
| 13 | \( 1 + (-0.316 + 0.948i)T \) |
| 17 | \( 1 + (-0.593 - 0.804i)T \) |
| 19 | \( 1 + (0.429 + 0.903i)T \) |
| 23 | \( 1 + (0.793 - 0.608i)T \) |
| 29 | \( 1 + (0.589 + 0.808i)T \) |
| 31 | \( 1 + (-0.872 + 0.488i)T \) |
| 37 | \( 1 + (0.156 + 0.987i)T \) |
| 41 | \( 1 + (0.848 + 0.529i)T \) |
| 43 | \( 1 + (0.947 + 0.318i)T \) |
| 47 | \( 1 + (-0.659 + 0.751i)T \) |
| 53 | \( 1 + (-0.0823 - 0.996i)T \) |
| 59 | \( 1 + (-0.994 - 0.100i)T \) |
| 61 | \( 1 + (-0.993 - 0.116i)T \) |
| 67 | \( 1 + (0.239 + 0.970i)T \) |
| 71 | \( 1 + (0.504 + 0.863i)T \) |
| 73 | \( 1 + (0.935 + 0.353i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.361 + 0.932i)T \) |
| 89 | \( 1 + (0.937 - 0.348i)T \) |
| 97 | \( 1 + (-0.443 - 0.896i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.142239662652263780312626651306, −17.64025663090839281019802011984, −16.93158579272725497110464486736, −15.87410915117183232980314784291, −15.47828340975946252035666040672, −14.76501270713022323774453349078, −13.60668862482255776988326997921, −13.31918234378067628584584288068, −12.64573949647658035484927480923, −12.29623222361008984029376769182, −10.85164875327903728048080332043, −10.589491950238700408334487937108, −9.59910554295549786265477713089, −9.31422390893441752730025852495, −8.78063743583828511932666235372, −7.89224672862792711405235676750, −7.40906801557620566198937234666, −6.30906129765974636577762618883, −5.319160577038308984309421007793, −4.71971963590907659766262369922, −3.64032256782567479016669160135, −2.81555603978798682733866743699, −2.39326959017879590683373889823, −1.8512855560275624246175261610, −0.64920252148576051893774861380,
0.93364048363987070140059639125, 1.68276046666873643909959919377, 2.59458962951851297122633698613, 3.27749105013703742637924446018, 4.48685851954493723378084164726, 5.00210731057196659751198433918, 6.09562890523956860673846774782, 6.77804250032567065820675392177, 7.202271679407931763633253173041, 7.93474430045092425691916371553, 8.734217257916057199722858055159, 9.46780706728734535181491051491, 9.76452122940872015172291927414, 10.58005040230539603258944589384, 11.07950527309218027726068155428, 12.62624606335135704778912812711, 13.182026318250022095616973158999, 13.87965238705628336749406739696, 14.222260642525515771783441363852, 14.73737232725360404989547619096, 15.77494703009189462434458656701, 16.30442011070761567149377367846, 16.76939105620613929331790676416, 17.75538017989770625777558814940, 18.26518792877496494675402252953