L(s) = 1 | + (0.989 − 0.143i)2-s + (−0.467 + 0.884i)3-s + (0.959 − 0.283i)4-s + (−0.635 + 0.772i)5-s + (−0.336 + 0.941i)6-s + (−0.0186 + 0.999i)7-s + (0.908 − 0.417i)8-s + (−0.563 − 0.826i)9-s + (−0.518 + 0.855i)10-s + (0.158 + 0.987i)11-s + (−0.198 + 0.980i)12-s + (−0.929 − 0.368i)13-s + (0.124 + 0.992i)14-s + (−0.385 − 0.922i)15-s + (0.839 − 0.543i)16-s + (0.995 + 0.0981i)17-s + ⋯ |
L(s) = 1 | + (0.989 − 0.143i)2-s + (−0.467 + 0.884i)3-s + (0.959 − 0.283i)4-s + (−0.635 + 0.772i)5-s + (−0.336 + 0.941i)6-s + (−0.0186 + 0.999i)7-s + (0.908 − 0.417i)8-s + (−0.563 − 0.826i)9-s + (−0.518 + 0.855i)10-s + (0.158 + 0.987i)11-s + (−0.198 + 0.980i)12-s + (−0.929 − 0.368i)13-s + (0.124 + 0.992i)14-s + (−0.385 − 0.922i)15-s + (0.839 − 0.543i)16-s + (0.995 + 0.0981i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.559 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.559 - 0.828i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3236538654 + 0.6090737932i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3236538654 + 0.6090737932i\) |
\(L(1)\) |
\(\approx\) |
\(1.064223478 + 0.5897897358i\) |
\(L(1)\) |
\(\approx\) |
\(1.064223478 + 0.5897897358i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (0.989 - 0.143i)T \) |
| 3 | \( 1 + (-0.467 + 0.884i)T \) |
| 5 | \( 1 + (-0.635 + 0.772i)T \) |
| 7 | \( 1 + (-0.0186 + 0.999i)T \) |
| 11 | \( 1 + (0.158 + 0.987i)T \) |
| 13 | \( 1 + (-0.929 - 0.368i)T \) |
| 17 | \( 1 + (0.995 + 0.0981i)T \) |
| 19 | \( 1 + (-0.988 - 0.153i)T \) |
| 23 | \( 1 + (0.748 + 0.663i)T \) |
| 29 | \( 1 + (-0.143 + 0.989i)T \) |
| 31 | \( 1 + (-0.930 - 0.366i)T \) |
| 37 | \( 1 + (-0.853 + 0.520i)T \) |
| 41 | \( 1 + (0.0318 - 0.999i)T \) |
| 43 | \( 1 + (-0.926 + 0.375i)T \) |
| 47 | \( 1 + (-0.811 - 0.584i)T \) |
| 53 | \( 1 + (0.0849 - 0.996i)T \) |
| 59 | \( 1 + (-0.756 + 0.653i)T \) |
| 61 | \( 1 + (-0.838 + 0.545i)T \) |
| 67 | \( 1 + (-0.295 + 0.955i)T \) |
| 71 | \( 1 + (0.842 - 0.538i)T \) |
| 73 | \( 1 + (0.997 - 0.0690i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.706 + 0.708i)T \) |
| 89 | \( 1 + (-0.993 - 0.114i)T \) |
| 97 | \( 1 + (0.0186 - 0.999i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.21939448665093302956301680215, −16.85748159891608231727759187206, −16.63575635889102595343106608317, −15.8397016581726732391164062497, −14.791676261920140153088596851390, −14.2626737188131264906587526943, −13.58134393962240055361515877876, −12.980904230354824098043021174780, −12.368982806337662596655731073226, −11.95141165759608312312938506277, −11.01538421779357890588785319974, −10.80003987728028725047799677498, −9.57599987319968328323545815863, −8.37663249293465141340835658450, −7.93002063359653284668688389662, −7.246863996405304841058882017644, −6.64210736747293108206649946308, −5.89856833183796297041139418443, −5.05632672128219212562184420080, −4.57440972950806581773405476386, −3.691492826803526062354964641065, −2.98920772355979181715957912661, −1.86182007818605110240743540949, −1.13185001095404481455251159618, −0.1321790012340895641735745486,
1.65364205188662177812603727772, 2.54544540739910334399742121265, 3.27132977993598690114543680854, 3.778724213514820902251450770581, 4.796156122899785609639570665021, 5.16508133180141129897303383490, 5.91446423952243771729183773890, 6.79371121760867994983450533353, 7.27470214893734296935298101144, 8.26669629787407273993247968433, 9.29852781939227992383554571942, 10.03610362076370071510214535321, 10.56342548871671220792669479940, 11.28780187600832818398642973263, 11.96696471826177340346635054896, 12.3212039538406016847930988658, 12.98753451870325386849461329566, 14.31218089261587153973854726414, 14.79435720918258531257053821833, 15.15148512102121961077050812527, 15.524452156867752286449486736490, 16.465712440452507621220975268917, 17.01988558614265088256447139646, 17.910084733637547960104323636310, 18.67167346812610249562701079213