L(s) = 1 | + (−0.954 − 0.298i)2-s + (0.627 + 0.778i)3-s + (0.821 + 0.569i)4-s + (−0.285 − 0.958i)5-s + (−0.366 − 0.930i)6-s + (−0.0770 + 0.997i)7-s + (−0.614 − 0.788i)8-s + (−0.213 + 0.976i)9-s + (−0.0132 + 0.999i)10-s + (0.773 + 0.633i)11-s + (0.0717 + 0.997i)12-s + (0.777 − 0.629i)13-s + (0.370 − 0.928i)14-s + (0.567 − 0.823i)15-s + (0.351 + 0.936i)16-s + (−0.964 + 0.262i)17-s + ⋯ |
L(s) = 1 | + (−0.954 − 0.298i)2-s + (0.627 + 0.778i)3-s + (0.821 + 0.569i)4-s + (−0.285 − 0.958i)5-s + (−0.366 − 0.930i)6-s + (−0.0770 + 0.997i)7-s + (−0.614 − 0.788i)8-s + (−0.213 + 0.976i)9-s + (−0.0132 + 0.999i)10-s + (0.773 + 0.633i)11-s + (0.0717 + 0.997i)12-s + (0.777 − 0.629i)13-s + (0.370 − 0.928i)14-s + (0.567 − 0.823i)15-s + (0.351 + 0.936i)16-s + (−0.964 + 0.262i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.261i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05961153028 + 0.4474248257i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05961153028 + 0.4474248257i\) |
\(L(1)\) |
\(\approx\) |
\(0.7164697792 + 0.1337693727i\) |
\(L(1)\) |
\(\approx\) |
\(0.7164697792 + 0.1337693727i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.954 - 0.298i)T \) |
| 3 | \( 1 + (0.627 + 0.778i)T \) |
| 5 | \( 1 + (-0.285 - 0.958i)T \) |
| 7 | \( 1 + (-0.0770 + 0.997i)T \) |
| 11 | \( 1 + (0.773 + 0.633i)T \) |
| 13 | \( 1 + (0.777 - 0.629i)T \) |
| 17 | \( 1 + (-0.964 + 0.262i)T \) |
| 19 | \( 1 + (-0.0345 - 0.999i)T \) |
| 23 | \( 1 + (-0.135 - 0.990i)T \) |
| 29 | \( 1 + (0.954 - 0.298i)T \) |
| 31 | \( 1 + (0.908 + 0.417i)T \) |
| 37 | \( 1 + (-0.890 + 0.455i)T \) |
| 41 | \( 1 + (-0.721 + 0.692i)T \) |
| 43 | \( 1 + (-0.643 - 0.765i)T \) |
| 47 | \( 1 + (-0.946 + 0.323i)T \) |
| 53 | \( 1 + (0.545 - 0.838i)T \) |
| 59 | \( 1 + (-0.760 + 0.649i)T \) |
| 61 | \( 1 + (-0.683 + 0.730i)T \) |
| 67 | \( 1 + (-0.992 - 0.121i)T \) |
| 71 | \( 1 + (0.531 - 0.846i)T \) |
| 73 | \( 1 + (-0.818 - 0.573i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.527 - 0.849i)T \) |
| 89 | \( 1 + (-0.796 + 0.604i)T \) |
| 97 | \( 1 + (-0.0770 + 0.997i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.9218937412024561942452113004, −17.37326036858576701231840477358, −16.63638164702680369263074812062, −15.842986020314479641374875104376, −15.26529508923980480297330726940, −14.3828604835661326912131325312, −13.90133221425658162389263093315, −13.5806640827674626321398304859, −12.25548038441383994482873336210, −11.51290506500313534440173188313, −11.13967680989706343305747378952, −10.25454712446528961478902984772, −9.63796943959083339240487094495, −8.750759738442831691234201098325, −8.24995413709379352767881233298, −7.52206689362262050447840497536, −6.82353207177547097765444848253, −6.52729618671665893800490811391, −5.85676034548760143453528038928, −4.273960996846041090620948602434, −3.49164831053547206365139771355, −2.93674531897702198768539754484, −1.753423235889802994531513787805, −1.35410361568505029870678707508, −0.150414415121223124997702178162,
1.21027557332215481408969559176, 2.02279403731264921489313560084, 2.78802279620749401676772146219, 3.52971787195986321607987461205, 4.47564534388877559997880449488, 4.96365321316906258396172859866, 6.16171386560224959825100518276, 6.793575015449931206686523803131, 7.96716625861728217293246995799, 8.623486582148286754538279084059, 8.72421567146059233180306011620, 9.44592515016201416216292273262, 10.177165267930792293866683413077, 10.83961888718846331862881344131, 11.78386213689525609353517398899, 12.09846693883919007397046776121, 13.06272275815213954472818361929, 13.57602339923120984327997484870, 14.90844691451655477151073259690, 15.32897133657856468959850873967, 15.79717571311852999673014239227, 16.38698430884965519836606060912, 17.1799505959650677113691085293, 17.74558743957810597848130508911, 18.465570988705877937099691428673