L(s) = 1 | + (−0.856 − 0.516i)2-s + (−0.821 − 0.569i)3-s + (0.467 + 0.884i)4-s + (0.739 − 0.673i)5-s + (0.410 + 0.912i)6-s + (−0.735 − 0.677i)7-s + (0.0557 − 0.998i)8-s + (0.351 + 0.936i)9-s + (−0.980 + 0.195i)10-s + (0.0955 + 0.995i)11-s + (0.119 − 0.992i)12-s + (−0.818 + 0.573i)13-s + (0.280 + 0.959i)14-s + (−0.991 + 0.132i)15-s + (−0.563 + 0.826i)16-s + (−0.711 + 0.702i)17-s + ⋯ |
L(s) = 1 | + (−0.856 − 0.516i)2-s + (−0.821 − 0.569i)3-s + (0.467 + 0.884i)4-s + (0.739 − 0.673i)5-s + (0.410 + 0.912i)6-s + (−0.735 − 0.677i)7-s + (0.0557 − 0.998i)8-s + (0.351 + 0.936i)9-s + (−0.980 + 0.195i)10-s + (0.0955 + 0.995i)11-s + (0.119 − 0.992i)12-s + (−0.818 + 0.573i)13-s + (0.280 + 0.959i)14-s + (−0.991 + 0.132i)15-s + (−0.563 + 0.826i)16-s + (−0.711 + 0.702i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.177i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.177i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02583205090 - 0.2892287521i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.02583205090 - 0.2892287521i\) |
\(L(1)\) |
\(\approx\) |
\(0.4507886744 - 0.2216957852i\) |
\(L(1)\) |
\(\approx\) |
\(0.4507886744 - 0.2216957852i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.856 - 0.516i)T \) |
| 3 | \( 1 + (-0.821 - 0.569i)T \) |
| 5 | \( 1 + (0.739 - 0.673i)T \) |
| 7 | \( 1 + (-0.735 - 0.677i)T \) |
| 11 | \( 1 + (0.0955 + 0.995i)T \) |
| 13 | \( 1 + (-0.818 + 0.573i)T \) |
| 17 | \( 1 + (-0.711 + 0.702i)T \) |
| 19 | \( 1 + (0.993 - 0.116i)T \) |
| 23 | \( 1 + (-0.681 + 0.732i)T \) |
| 29 | \( 1 + (-0.516 - 0.856i)T \) |
| 31 | \( 1 + (-0.657 - 0.753i)T \) |
| 37 | \( 1 + (-0.995 - 0.0902i)T \) |
| 41 | \( 1 + (0.956 - 0.290i)T \) |
| 43 | \( 1 + (-0.288 + 0.957i)T \) |
| 47 | \( 1 + (-0.148 - 0.988i)T \) |
| 53 | \( 1 + (-0.257 + 0.966i)T \) |
| 59 | \( 1 + (0.976 - 0.216i)T \) |
| 61 | \( 1 + (0.881 + 0.472i)T \) |
| 67 | \( 1 + (0.851 - 0.525i)T \) |
| 71 | \( 1 + (0.724 - 0.689i)T \) |
| 73 | \( 1 + (0.929 + 0.368i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.998 + 0.0531i)T \) |
| 89 | \( 1 + (-0.990 + 0.140i)T \) |
| 97 | \( 1 + (0.735 + 0.677i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.25736423420354279369156972787, −17.92281092989305753500514712605, −17.18888870022370638567386757423, −16.489500178187561245871846499990, −15.90001478573082904055117446738, −15.56936735824483571325132538936, −14.48027138956771809825673637807, −14.26250431736570682895317341559, −13.110457897452068027969416442887, −12.28899869500274321838667673914, −11.44674188763459189679190870940, −10.93329322087779266720940276263, −10.19316440848508406202645403600, −9.70935600603542532900044957616, −9.15046914490346854631741363077, −8.45252660341030415607459772116, −7.2217350832251919848569377787, −6.765211094662317030147389083193, −6.103905895561003870293886218605, −5.36075156977252708013596241828, −5.17001654882107427455965645191, −3.585579756391269125856584853482, −2.86445855324942904473092464795, −2.05738582359244190674108117779, −0.82737448200270990337277827822,
0.15531747642212336426615142951, 1.1289427588908295163273449462, 1.96436428390424352908957508329, 2.322620824567965606529708153096, 3.77176518234459475648628017155, 4.40815057989905634409618468958, 5.33948260700799031921115158687, 6.21803599259391051705767863309, 6.88247837274684018359405072522, 7.4337953749823580037642255489, 8.10843676655733536794859290297, 9.34000569198397735528086207388, 9.606992885121307160080741789250, 10.20669930974432350926304779812, 10.9752597923078982298829121120, 11.828709718090062177061859725006, 12.26778487787408696451703582921, 13.05859170925295835452694872267, 13.30622120589136822670906299014, 14.22568180456045778892927409364, 15.513820572999019017036865639769, 16.13395190447505457086119098125, 16.82678334640341466419344973268, 17.25230362950786164676268266737, 17.66529438395647465252917084469