L(s) = 1 | + (−0.0239 − 0.999i)2-s + (−0.336 + 0.941i)3-s + (−0.998 + 0.0478i)4-s + (−0.663 + 0.748i)5-s + (0.949 + 0.313i)6-s + (0.576 − 0.817i)7-s + (0.0717 + 0.997i)8-s + (−0.773 − 0.633i)9-s + (0.763 + 0.645i)10-s + (−0.522 − 0.852i)11-s + (0.290 − 0.956i)12-s + (−0.993 + 0.111i)13-s + (−0.830 − 0.556i)14-s + (−0.481 − 0.876i)15-s + (0.995 − 0.0955i)16-s + (−0.103 + 0.994i)17-s + ⋯ |
L(s) = 1 | + (−0.0239 − 0.999i)2-s + (−0.336 + 0.941i)3-s + (−0.998 + 0.0478i)4-s + (−0.663 + 0.748i)5-s + (0.949 + 0.313i)6-s + (0.576 − 0.817i)7-s + (0.0717 + 0.997i)8-s + (−0.773 − 0.633i)9-s + (0.763 + 0.645i)10-s + (−0.522 − 0.852i)11-s + (0.290 − 0.956i)12-s + (−0.993 + 0.111i)13-s + (−0.830 − 0.556i)14-s + (−0.481 − 0.876i)15-s + (0.995 − 0.0955i)16-s + (−0.103 + 0.994i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.752 + 0.658i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4729 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.752 + 0.658i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3704930568 + 0.1392871315i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3704930568 + 0.1392871315i\) |
\(L(1)\) |
\(\approx\) |
\(0.5764463971 - 0.1151400181i\) |
\(L(1)\) |
\(\approx\) |
\(0.5764463971 - 0.1151400181i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 4729 | \( 1 \) |
good | 2 | \( 1 + (-0.0239 - 0.999i)T \) |
| 3 | \( 1 + (-0.336 + 0.941i)T \) |
| 5 | \( 1 + (-0.663 + 0.748i)T \) |
| 7 | \( 1 + (0.576 - 0.817i)T \) |
| 11 | \( 1 + (-0.522 - 0.852i)T \) |
| 13 | \( 1 + (-0.993 + 0.111i)T \) |
| 17 | \( 1 + (-0.103 + 0.994i)T \) |
| 19 | \( 1 + (-0.366 + 0.930i)T \) |
| 23 | \( 1 + (-0.927 - 0.373i)T \) |
| 29 | \( 1 + (0.0239 - 0.999i)T \) |
| 31 | \( 1 + (-0.198 - 0.980i)T \) |
| 37 | \( 1 + (-0.709 - 0.704i)T \) |
| 41 | \( 1 + (-0.495 - 0.868i)T \) |
| 43 | \( 1 + (0.150 + 0.988i)T \) |
| 47 | \( 1 + (-0.981 - 0.190i)T \) |
| 53 | \( 1 + (0.944 - 0.328i)T \) |
| 59 | \( 1 + (-0.0557 + 0.998i)T \) |
| 61 | \( 1 + (0.182 + 0.983i)T \) |
| 67 | \( 1 + (0.467 - 0.884i)T \) |
| 71 | \( 1 + (-0.996 - 0.0796i)T \) |
| 73 | \( 1 + (0.651 + 0.758i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.675 + 0.737i)T \) |
| 89 | \( 1 + (0.589 - 0.808i)T \) |
| 97 | \( 1 + (0.576 - 0.817i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.866281020610168857109089496812, −17.54608625386441358013291793765, −16.81264147984584456702253959871, −15.98096716221831528302217450026, −15.559830252650731146943208355714, −14.78029095945022133820892111252, −14.19032217610617933624341531256, −13.2739095061116749945066672506, −12.76682996173496506009529002033, −12.05138515495616450279207839184, −11.774288901008224360912438234145, −10.636552269755939396799788539522, −9.63004657863194135583904142159, −8.88909983247817715735775065323, −8.32069912150026360221214845582, −7.6595223532273038108634391859, −7.160098500348043674937023763748, −6.5150840357528954973786334109, −5.289895252482484420219428860027, −5.09912453964639761471463675321, −4.605343643858113815414377625986, −3.23987183909061514117410929344, −2.23736289453848217165021040435, −1.38694784269691186704410141285, −0.212574647498267131912251449776,
0.52786911103590852602534637050, 1.93071921773913734061092073894, 2.69043479546032592606425284845, 3.70360568201475639071229786817, 3.95620773557330187852442109792, 4.62391332985328282641296050738, 5.56786092828311189470337211400, 6.23869979925110304804274259904, 7.491718316765662026673513617670, 8.12798078317173850501713694228, 8.65489187918545282620150166045, 9.85360718447840403272168869042, 10.307506895853969292999939817208, 10.65511754330351203421484626545, 11.43746215352848252745711585641, 11.81449239917453868653458960268, 12.63941325687449778734728929187, 13.6010762256549448807569311412, 14.358900741447005068225171294771, 14.694692519320266404511531706287, 15.42537647008364231304846271712, 16.45123853450285901186141865992, 16.898800727362021573478255117935, 17.63386868941702743397764138892, 18.260557328908374882902937448930